
Introduction
to NCL
[part 1 of 3]

Dennis Shea

Sponsored by
the National

Science
Foundation

Introduction: Key Points

NCL gross pictoral overview

NCL syntax characters
= , :=, ->, @, !, &, $, ; [… additional syntax]

NCL script creation and execution

NCL variable types: create and delete

pdf, png, svg

Vis5D

NCL Pictoral Overview

•  portable: *nix, windows (cygwin), MacOS
•  general purpose: unique capabilities, functions
•  excellent 2D graphics (limited 3D)

•  freeware: supported, public domain

•  Integrated data processing environment

Shape

Executing NCL: Interactive (1 of 3)

•  Interactive Mode (unix/linux command line)
–  ncl [options][command-line-arguments] <return>

ncl> enter commands
ncl> quit <return>

–  can save (record) interactive commands
ncl> record “file_name”
ncl> …. enter commands …
ncl> stop record

•  Interactive environment
–  use for simple testing
–  can use ‘up/down arrow’ to recall previous lines
–  not as ‘friendly’ as (say) IDL, Matlab, ferret

–  not good at error recovery

Running NCL: Batch (2 of 3)
Recommended

•  Batch Mode [.ncl suffix is optional]

–  ncl [options][arguments] script.ncl
–  ncl < script.ncl [also acceptable]

–  ncl [options][arguments] script.ncl >&! out
–  ncl [options][arguments] script.ncl >&! out &

§  appending "&" means put in background
§  note: the >&! & are csh and tcsh syntax

•  NCL built for larger processing tasks
–  better accomplished via a script (recommended)

–  use editor (vi, nedit, emacs, …)
–  editor language enhancements (Under ‘Support’)

–  enter/delete statements; save file
–  run the script as above

Running NCL: predefined options (3 of 3)

•  ncl –hnxV script.ncl
–  [predfined options are preceded by dash]

•  may be used for interactive or batch mode
•  Information

–  ncl –h [display predefined options and usage and exit]
–  ncl –V [print the NCL version and exit]

•  Action
–  ncl –x [echo statements as encountered (debug)]
–  ncl –n [don't enumerate dimensions of values in print()]

•  Multiple options may be specified
–  ncl –nx [not ncl –n –x]

•  Experiment with options (for fun)

NCL Syntax Characters (subset)
•  = - assignment
•  := - reassignment (v6.1.2)
•  ; - comment [can appear anywhere; text to right ; ignored]
•  -> - use to (im/ex)port variables via addfile(s) function(s)
•  @ - access/create attributes
•  ! - access/create named dimension
•  & - access/create coordinate variable
•  {…} - coordinate subscripting
•  $...$ - enclose strings when (im/ex)port variables via addfile(s)
•  (/../) - array construction (variable); remove meta data
•  [/../] - list construction;
•  [:] - all elements of a list
•  : - array syntax
•  | - separator for named dimensions
•  \ - continue character [statement to span multiple lines]
•  :: - syntax for external shared objects (eg, fortran/C)

Data Types
numeric (classic netCDF3)
•  double (64 bit)
•  float (32 bit)
•  long (64 bit; signed +/-)
•  integer (32 bit; signed +/-)
•  short (16 bit; signed +/-)
•  byte (8 bit, signed +/-)
•  complex NOT supported

non-numeric
•  string
•  character
•  graphic
•  file
•  logical
•  list

enumeric (netCDF4; HDF5)
•  int64 (64 bit; signed +/-)
•  uint64 (64 bit; unsigned)
•  uint (32 bit; unsigned)
•  ulong (32 bit; unsigned)
•  ushort (16 bit; unsigned)
•  ubyte (8 bit, unsigned)

 snumeric
[numeric , enumeric]

Simple Variable Creation
a_int = 1
a_float = 2.0 ; 0.00002 , 2e-5
a_double = 3.2d ; 0.0032d , 3.2d-3
a_string = "a”
a_logical = True [False] ; note capital T/F

•  array constructor characters (/…/)
–  a_integer = (/1, 2, 3/) ; ispan(1,3,1)
–  a_float = (/2.0, 5 , 8.0/) ; fspan(2,8,3)
–  a_double = (/12 , 2d0 , 3.2 /) ; (/12,2 ,3.2 /)*1d0
–  a_string = (/"abcd", "e", "Hello, World”/)
–  a_logical = (/True, False, True/)
–  a_2darray = (/ (/1,2,3/), (/4,5,6/), (/7,8,9/) /)

Variable Creation and Deletion
a = 2.0
pi = 4.0*atan(1.0)
s = (/ “Melbourne”, “Sydney”, “Toulouse”, “Boulder” /)
r = f->precip ; (time,lat,lon)
R = random_normal(20,7, (/N,M/)) ; R(N,M)
q = new ((/ntim, klev, nlat, mlon/), “double”)

; free memory; generally, do not need to do this
; delete each variable individually

delete(a)
delete(pi)
delete(s)
delete(r)
delete(R)

; delete multiple variables in one line
 delete([/ a, pi, s, r, R, q /]) ; [/…/] list syntax

Conversion between data types
•  NCL is a ‘strongly typed’ language

–  constraints on mixing data types
•  coercion

–  implicit conversion of one type to another
•  automatic coercion when no info is lost

–  let i be integer and x be float or double
–  fortran: x=i and i=x
– NCL: x=i and i=toint(x)

•  many functions to perform conversions

Variable Reassignment

•  Two approaches
–  Up to version 6.1.1, 2 steps required

–  delete(k) ; delete existing variable
–  k = (/17.5, 21.4/) ; new assignment

–  version 6.1.2
–  k := (/17.5, 21.4/) ; delete previous variable
 ; and reassign ‘k’

•  NCL = will not allow the following
k = (/ 1, 3, 4, 9 /) ; 1d array, type integer
 … later in code …
k = (/17.5, 21.4/) ; different size and type

•  NCL := will not allow the following
x := x(::4,:,:) ; same variable

