Introduction to NCL Graphics

Part 1 in a series

September 26, 2014 Mary Haley

Sponsored by the National Science Foundation

Notes

- First in a series of lectures on NCL Graphics
- Don't know yet how many in the series ☺
- Lectures based on slides used in our NCL Workshops
- The second lecture will focus on contouring
- Geared towards new users of NCL
- Assumptions:
 - You are familiar with basic NCL language features
 - You know about the NCL/NetCDF data model (attributes, coordinate arrays, dimension names, missing values)

Goals for this series of lectures

- Get you comfortable with the basics of NCL Graphics – you won't be an expert!
- Show you the most common things people do with NCL graphics
- Give you tips for editing, debugging, creating nice graphics
- Answer any questions you may have about NCL graphics

NCL Graphics topics for this lecture

- Types of graphics you can create with NCL
- The basics
- Line-by-line examples of XY plots
- Interactive demo
- Customizing NCL environment (if there's time)

<Suite of gallery slides>

Introduction to NCL Graphics

NCL Graphics topics

- Types of graphics you can create with NCL
- The basics
- Line-by-line examples of XY plots
- Interactive demo
- Customizing NCL environment (if there's time)

Four steps to create an NCL graphic

- 1. Load the "gsn" scripts
- 2. Open a workstation
- 3. Set plot options (resources)
- 4. Call the appropriate plotting function

Step 1: Load the "gsn" scripts *

* Optional in NCL V6.2.x

load "\$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl"
load "\$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_csm.ncl"

begin

y = sin(0.0628*ispan(0,100,1)) ; 101 points

wks = gsn_open_wks("ps","test") ; 'test.ps'

res = True ; plot options res@xyLineColor = "Blue" ; line color res@tiMainString = "This is a title" res@gsnMaximize = True plot = gsn_csm_y(wks,y,res) ; no X values end

Step 1: Load the "gsn" scripts

- Two ways of doing graphics in NCL:
 - 1. Using one method
 - Using high-level graphical interfaces:
 "gsn" and "gsn_csm" functions
- "gsn" stands for "Getting Started using NCL"
- "csm" stands for "Climate System Model"
- Functions in "gsn_csm.ncl" are more "metadata aware"

Metadata recognized by gsn_csm scripts

- _FillValue attribute recognized as missing value ("missing_value" is NOT)
- Data attributes "long_name" and "units" may be used for plot titles
- Coordinate arrays (if available) used for axes values
- If data has coordinate arrays and you are plotting over a map, then "units" attribute of "degrees_east" or "degrees_north" expected

"gsn_csm" XY plots

Step 1.5: Get some data!

load "\$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl"
load "\$NCARG ROOT/lib/ncarg/nclscripts/csm/gsn csm.ncl"

begin

y = sin(0.0628*ispan(0,100,1)) ; 101 points

wks = gsn_open_wks("ps","test") ; 'test.ps'
res = True ; plot options

res@xyLineColor = "Blue" ; line color

res@tiMainString = "This is a title"

res@gsnMaximize = True

plot = gsn_csm_y(wks,y,res) ; no X values
end

Step 2: Open a workstation

load "\$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl"
load "\$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_csm.ncl"

begin

y = sin(0.0628*ispan(0,100,1)) ; 101 points

wks = gsn_open_wks("ps","test") ; 'test.ps'

res = True ; plot options res@xyLineColor = "Blue" ; line color res@tiMainString = "This is a title" res@gsnMaximize = True plot = gsn_csm_y(wks,y,res) ; no X values end

Step 2: Open a workstation

- "Workstation" is where to send the graphics
- Can be:
 - PostScript ("ps") ("eps" only one image)
 - PDF ("pdf")
 - X11 window ("x11" good for debugging)
 - PNG ("png")
 - SVG (new in NCL V6.2.0)
 - NCGM ("ncgm") rarely used
- Has a default color map associated with it

Step 2: Open a workstation

Some samples:

wks = gsn_open_wks("x11", "test") ; X11 window

wks = gsn_open_wks("ps", "test") ; "test.ps"

wks = gsn_open_wks("png", "wrf") ; "wrf.png"

- wks = gsn_open_wks("pdf", "slp") ; "slp.pdf"
- wks = gsn_open_wks("eps", "cn") ; "cn.eps"

"gsn_open_wks" is a function. "wks" is a variable name. You can use whatever name you like for "wks".

Step 3: Set plot options (resources)

load "\$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl"
load "\$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_csm.ncl"

begin

y = sin(0.0628*ispan(0,100,1)) ; 101 points

wks = gsn_open_wks("ps","test") ; 'test.ps'

res = True ; plot options res@xyLineColor = "Blue" ; line color res@tiMainString = "This is a title" res@gsnMaximize = True ; make plot larger plot = gsn_csm_y(wks,y,res) ; no X values end

Step 3: Set plot options (resources)

- Resources are the heart of your NCL graphics code. There are over 1,400 resources!
- Use resources to change the look of a plot
- They are grouped by object type.
- There are 11 "graphical" objects:
 - contours, labelbars, legends, maps, primitives, streamlines, text strings, tickmarks, titles, vectors, XY plots

Description of resources

- Starts with 2 or 3 lower-case letters based on object it is associated with. Some examples:
 - "xy" XY Plot "cn" Contour plot
 "vc" Vector plot "ti" Title
 - "tm" Tickmark "lb" Labelbar
- Made up of full words; first letter capitalized:
 - xyLineColorcnFillOntiMainString- vcRefMagnitudeFgsnMaximize
- Some have an "F" on the end to indicate a floating point resource: "xyLineThicknessF"
- "gsn" special resources recognized by gsn scripts

Description of resources (cont'd)

• Resources are set by attaching them as attributes to an NCL *logical* variable:

res = True ; can name "res" whatever you want

res@mpMinLatF = 30. ; decimal point not necessary

- Most have default values.
- There are many types:

res@tiMainString = "This is a title"
res@tmXBLabelFontHeightF = 0.01
res@cnLineLabelsOn = True
res@xyLineColor = "RosyBrown"
res@xyLineColors = (/"red", "green", "blue"/)
res@lgLineThicknesses = (/ 1.0, 2.0, 3/)
Introduction to NCL Graphics

Description of resources (cont'd)

 Resources across objects are similarly named for easier recollection: xyLineColor, cnLineColor, gsLineColor, mpGridLineColor, tmBorderLineColor

tiMainFontHeightF,
tmXBLabelFontHeightF,
lbLabelFontHeightF,
cnLineLabelFontHeightF

xyDashPattern, mpPerimLineDashPattern, lbBoxLineDashPattern, cnLineDashPattern

and so on ...

Step 4: Call appropriate plotting function

load "\$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl"
load "\$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_csm.ncl"

begin y = sin(0.0628*ispan(0,100,1)) ; 101 points wks = gsn_open_wks("ps","test") ; 'test.ps' res = True ; plot options res@xyLineColor = "Blue" ; line color res@tiMainString = "This is a title" res@gsnMaximize = True plot = gsn_csm_y(wks,y,res) ; no X values end

Step 4: Call appropriate plotting function

- Call one of the gsn_csm_xxxxx plotting functions.
- Some examples:

xy = gsn_csm_xy(wks,x,y,res)

plot = gsn_csm_contour(wks,data,res)

plot = gsn_csm_contour_map(wks,data,res)

map = gsn_csm_vector_map(wks,u,v,res)

phgt = gsn_csm_pres_hgt(wks,data,res)

These are all functions. You can use whatever name you like for variable name on left side of "=" sign.

NCL Graphics topics

- Types of graphics you can create with NCL
- The basics
- Line-by-line examples of XY plots
- Interactive demo
- Customizing NCL environment (if there's time)

Line-by-line example scripts

Most NCL scripts that follow can be viewed and downloaded from the web:

http://www.ncl.ucar.edu/Training/Workshops/Scripts/

Scripts have names like <u>xy1a.ncl</u>, <u>xy1b.ncl</u>, ...

The first one is usually one with no resources set, and each subsequent script adds a few more resources.

Example xy1a.ncl

- gsn_csm_y
- Dummy data generated in script
- Simple XY plot with a single curve, index values are used on X axis
- No resources (plot options) set
- Scripts "xy1b.ncl", "xy1c.ncl", etc. show the same example as we add more resources to further customize it.

http://www.ncl.ucar.edu/Training/Workshops/Scripts/#XyPlots

load "\$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl"
load "\$NCARG ROOT/lib/ncarg/nclscripts/csm/gsn csm.ncl"

begin y = sin(0.0628*ispan(0,100,1)) ; 101 points wks = gsn_open_wks("ps","xy1a") ; "xy1a.ps" res = True ; no plot options desired yet plot = gsn_csm_y(wks,y,res) ; no X values end

Example <u>xy1b.ncl</u>

- Line color changed (using color index values)
- Default color map discussed
- Resource introduced:

-xyLineColor - sets line color

load "\$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl"
load "\$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_csm.ncl"

begin
y = sin(0.0628*ispan(0,100,1))
wks = gsn_open_wks("ps","xy1b") ; "xy1b.ps"

; Set an XY plot resource.

res = True ; We plan to set options
res@xyLineColor = 2 ; Line color (old way
; of setting color)

plot = gsn_csm_y(wks,y,res)
end

b	Index 0 is the ackground color		0	16	32	48	64	80	96	112	128	144	160	176	192	208	224	240	
Index 1 is the foreground color			1	17	33	49	65	81	97	113	129	145	161	177	193	209	225	241	
			2	18	34	50	66	82	98	114	130	146	162	178	194	210	226	242	
			C	olor	ind	ex	2 is	pur	ple	15	131	147	163	179	195	211	227	243	
						SO.	••			16	122	1/18	164	180	106	212	228	244	
Integer			re	res@xyLineColor = 2							132	140	104	100	190	212	220	244	
	values used		v l	vill g	give	yo	u a	pur	ple	17	133	149	165	181	197	213	229	245	
	with color					cur	ve			18	134	150	166	182	198	214	230	246	
	resources		7	23	39	55	71	87	103	119	135	151	167	183	199	215	231	247	
	will be		-	20												210	201	241	
	indexes into		8	24	40	56	72	88	104	120	136	152	168	184	200	216	232	248	
	the current		9	25	41	57	73	89	105	121	137	153	169	185	201	217	233	249	
	color table		10	26	42	58	74	90	106	122	138	154	170	186	202	218	234	250	
			11	27	43	59	75	91	107	123	139	155	171	187	203	219	235	251	
	Default		12	28	44	60	76	92	108	124	140	156	172	188	204	220	236	252	
	color		13	29	45	61	77	93	109	125	141	157	173	189	205	221	237	253	
			14	20	46	60	70	04	110	100	140	150	474	100	000	000	000	054	
	taple		14	30	40	02	18	94		120	142	158	174	190	206	222	238	254	
			15	31	47	63	79	95	111	127	143	159	175	191	207	223	239	255	

Example xy1c.ncl

- gsn_csm_xy
- Better way of setting line color (using "named" color)
- Line thickness increased
- "long_name" attributes set
- Resource introduced:

-xyLineThicknessF - sets line thickness

Samples of named colors <u>http://www.ncl.ucar.edu/Document/Graphics/named_colors.shtml</u>

seashell3	slategrey	greyaa	клакі
seashell4	snow	honeydew	khaki2
sienna	snow1	honeydew1	khaki3
sienna1	snow2	honeydew2	khaki4
sienna2	snow3	honeydew3	lavender
sienna3	snow4	honeydew4	lavenderblush
sienna4	springgreen	hotpink	lavenderblush1
skyblue	springgreen1	hotpink1	lavenderblush2
skyblue1	springgreen2	hotpink2	lavenderblush3
skyblue2	springgreen3	hotpink3	lavenderblush4
skyblue3	springgreen4	hotpink4	lawngreen
skyblue4	steelblue	indianred	lemonchiffon
slateblue	steelblue1	indianred1	lemonchiffon1
slateblue1	steelblue2	indianred2	lemonchiffon2
slateblue2	steelblue3	indianred3	lemonchiffon3
slateblue3	steelblue4	indianred4	lemonchiffon4
slateblue4	tan	ivory	lightblue
slategray	tan1	ivory1	lightblue1
slategray1	tan2	ivory2	lightblue2
slategray2	tan3	ivory3	lightblue3
slategray3	tan4	ivory4	lightblue4
linen	mediumpurple4	darkorchid	deeppink2
magenta	mediumseagreen	darkorchid1	deeppink3
magenta1	mediumslateblue	darkorchid2	deeppink4
magenta2	mediumspringgreen	darkorchid3	deepskyblue
magenta3	mediumturquoise	darkorchid4	deepskyblue1
magenta4	mediumvioletred	darksalmon	deepskyblue2
maroon	midnightblue	darkseagreen	deepskyblue3
maroon1	mintcream	darkseagreen1	deepskyblue4
maroon2	mistyrose	darkseagreen2	dimgray
maroon3	mistyrose1	darkseagreen3	dimgrey
maroon4	mistyrose2	darkseagreen4	dodgerblue
mediumaquamarine	mistyrose3	darkslateblue	dodgerblue1
mediumblue	mistyrose4	darkslategray	dodgerblue2
mediumorchid	moccasin	darkslategray1	dodgerblue3
mediumorchid1	navajowhite	darkslategray2	dodgerblue4
mediumorchid2	navajowhite1	darkslategray3	firebrick
mediumorchid3	navajowhite2	darkslategray4	firebrick1
mediumorchid4	navajowhite3	darkslategrey	firebrick2
mediumpurple	navajowhite4	darkturquoise	firebrick3
mediumpurple1	navy	darkviolet	firebrick4
mediumpurple2	navyblue	deeppink	floralwhite
mediumpurple3	oldlace	deeppink1	forestgreen

load "\$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl"
load "\$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_csm.ncl"

begin
x = ispan(-50,50,1); Create some X and
y = sin(0.0628*x); Y data.
x@long_name = "X values"; Add long_name attributes to
y@long_name = "Sine values"; see what happens to plot.

;---Set some XY plot resources.

end

Example <u>xy1d.ncl</u>

- Axes limits changed
- Special "tr" resources introduced:

 – trYMinF, trYMaxF, trXMinF, trXMaxF - sets mins and maxes for X and Y axes (transformation resources)

 These resources can also apply to contour, vector, and streamline plots

•••								
be	egin							
	x = ispan(-50, 5)	0,1)						
	y = sin(0.0628 * x)							
	wks = gsn_open_wks("ps","xyld")							
	res res@xyLineColor res@xyLineThick	nessF	= T = ": = 5	rue Blue	e"	5x a	s thick	-
	res@trYMinF res@trYMaxF res@trXMinF res@trXMaxF	= mi = ma = mi = mi	n(y) x(y) n(x) x(x)	;	Set	axes	limits	•

plot = gsn_csm_xy(wks,x,y,res)
end

• • •								
<pre>begin x = ispan(-50,5) y = sin(0.0628)</pre>	<pre>begin $x = ispan(-50, 50, 1)$ $y = sin(0, 0628 * x)$</pre>							
<u> </u>								
wks = gsn_open_	_wks("ps","xyld_mod	2")						
res res@xyLineColor res@xyLineThic}	= True c = "Blue" knessF = 5 ; 5	x as thick						
res@trYMinF res@trYMaxF res@trXMinF res@trXMaxF	= -5 ; Set axe = 5 = -100 = 100	s limits.						

plot = gsn_csm_xy(wks,x,y,res) end

•

Example <u>xy1e.ncl</u>

- Dash pattern set for curve
- Title resources set
- Resources introduced:
 - xyDashPattern sets dash pattern for curve
 - tiMainString, tiXAxisString, tiYAxisString sets strings for axes and main title, can also be used for contour, vector, etc, plots
- tiXAxisString and tiYAxisString will override "long_name" attributes


```
. . .
begin
 x = ispan(-50, 50, 1)
 y = sin(0.0628 * x)
 wks = gsn_open_wks("ps","xy1e")
                      = True
  res
                      = "Blue"
  res@xyLineColor
 res@xyDashPattern = 2
                                 ; 0 is default (solid)
                                 ; 3x as thick
  res@xyLineThicknessF = 3
  res@trYMinF = min(y) ; Set axes limits.
  res@trYMaxF = max(y)
 res@trXMinF = min(x)
  res@trXMaxF = max(x)
 res@tiMainString = "This is a main string"
  res@tiXAxisString
                      = "X Values"
 res@tiYAxisString
                      = "Y Values"
 plot = gsn_csm_xy(wks,x,y,res)
```

end

Predefined dash patterns and their index numbers

http://www.ncl.ucar.edu/Document/Graphics/dash_patterns.shtml

Example <u>xy1f.ncl</u>

- Explicitly set labels for bottom tickmarks
- Resources introduced:

 – tmXBMode, tmXBValues, tmXBLabels – sets locations and strings for bottom tickmarks

- Note about tickmark resources: all four axes have their own set of tickmarks, for example:
 - tmYLMode (Y left), tmYRMode (Y right), tmXBMode (X bottom), tmXTMode (X top)

begin

. . .

```
x = ispan(-50, 50, 1)
y = sin(0.0628 * x)
wks = gsn_open_wks("ps","xylf")
                  = True
                            ; Set some plot options
res
res@xyLineColor = "Blue" ; default is foreground color
res@xyDashPattern = 2 ; 0 is default (solid)
res@xyLineThicknessF = 3 ; 3x as thick
res@trYMinF = -0.75; Minimum Y axis value
res@trYMaxF = 0.80 ; Maximum Y axis value
res@trXMinF = -40.0 ; Minimum X axis value
res@trXMaxF = 50.0
                            ; Maximum X axis value
res@tiMainString = "This is a main string"
res@tiXAxisString = "X Values"
res@tiYAxisString = "Y Values"
res@tmXBMode = "Explicit" ; Explicitly set
res@tmXBValues = (/-50,-25, 0, 25, 50/) ; bottom tick mark
res@tmXBLabels = (/"A","B","C","D","E"/) ; labels.
```

```
plot = gsn_csm_xy(wks,x,y,res)
end
```


NCL Graphics topics

- Types of graphics you can create with NCL
- The basics
- Line-by-line examples of XY plots
- Interactive demo
- Customizing NCL environment (if there's time)

Advanced topics

- Two ways to add data to an existing XY plot <u>http://www.ncl.ucar.edu/Applications/xy.shtml#ex25</u> <u>http://www.ncl.ucar.edu/Applications/xy.shtml#ex26</u>
- Filling the area between two curves http://www.ncl.ucar.edu/Applications/xy.shtml#ex24
- Turning XY curves into individual bars <u>http://www.ncl.ucar.edu/Applications/bar.shtml</u>
- Changing an axis (log, irregular, linear) <u>http://www.ncl.ucar.edu/Applications/axes.shtml#ex3</u>

XY plot exercises

http://www.ncl.ucar.edu/Training/Workshops/Exercises/

Click on:

- Basic graphical exercises
- XY Plot Exercises (set 1)
- XY Plot Exercises (set 2)

More complex (some real world) examples: <u>http://www.ncl.ucar.edu/Applications/xy.shtml</u>

In review...

- Four main steps to create a plot
 - 1. Load the scripts
 - 2. Open a workstation
 - 3. Set some resources
 - 4. Call the desired plotting function

Tips

- Use X11 window while debugging script; move to PS/PDF later
- Hardest part are the resources: start simple
- Organize resources for easier debugging
- Start with an existing script if possible

NCL Graphics topics

- Types of graphics you can create with NCL
- The basics
- Line-by-line examples of XY plots
- Interactive demo
- Customizing NCL environment (if there's time)

Customize your UNIX editor

- Students have contributed many nice enhanced UNIX editor features specifically for NCL scripts.
- Enhancements available for emacs, nedit, vim, TextMate, Aquamacs, NetBeans, to name a few.

http://www.ncl.ucar.edu/Applications/editor.shtml

- Editor enhancements will highlight functions, graphical resource, comments, syntax, and other features in different colors.
- Makes debugging a little easier!

Sample editor enhancement

Customize your NCL graphics environment

- Optional, was highly recommended for older versions of NCL
- Download ".hluresfile" file, put in home directory
- Can be used to change default color map, font, function code, etc.
- Can be used to change default size of X11 window that pops up, or default size of PNG image

http://www.ncl.ucar.edu/Document/Graphics/hlures.shtml

Sample ".hluresfile"

! Color map *wkColorMap

: rainbow

*Font : times-roman

! Function code [Default is a ~]
*TextFuncCode ::

! Set size of X11 or PNG window
*wkWidth : 1000
*wkHeight : 1000

