Introduction to NCL Graphics

Part 2 in a series

September 26, 2014 Mary Haley

Sponsored by the National Science Foundation

Notes

- Second in a series of lectures on NCL Graphics
- Still don't know yet how many in the series ☺
- Lectures based on slides used in our NCL Workshops
- Geared towards new users of NCL
- Assumptions:
 - You are familiar with basic NCL language features
 - You are familiar with basic structure of an NCL graphics script (covered in first lecture)
 - You know about the NCL/NetCDF data model (attributes, coordinate arrays, dimension names, missing values)

Goals for this series of lectures

- Get you comfortable with creating plots in NCL
- Show you the most common things people do with NCL graphics
- Give you tips for editing, debugging, creating nice graphics
- Answer any questions you may have about NCL graphics

NCL Graphics topics for this lecture

- Line-by-line example of creating a contour plot script
- Interactive demo

Example <u>contour1a.ncl</u>

- gsn_csm_contour
- Simple contour plot
- Data retrieved from netCDF file
- Data has _FillValue attribute, which is automatically "seen" by gsn_csm script
- No plot options (resources) set

http://www.ncl.ucar.edu/Training/Workshops/Scripts/#Contouring

load "\$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl"
load "\$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_csm.ncl"

begin						
<pre>tf = addfile("Tstorm.cdf","r")</pre>						
T = tf->t(0,:,:)	; Read first time step					
	; of temperature data.					
printVarSummary(T)	Very useful for debugging!					
<pre>wks = gsn_open_wks("ps","contour1a")</pre>						
res = True	; No plot options set.					
<pre>plot = gsn_csm_contour(wks,T,res)</pre>						
end						

Output from "printVarSummary(T)"

```
Variable: T
Type: float
Total Size: 4752 bytes
            1188 values
Number of Dimensions: 2
Dimensions and sizes: [lat | 33] x [lon | 36]
Coordinates:
            lat: [20..60]
            lon: [-140..-52.5]
Number Of Attributes: 2
  timestep: 0
  FillValue : -9999
```


Example <u>contour1b.ncl</u>

- "units" attribute added to both lat and lon coordinate arrays
- Contour fill turned on
- Resources introduced:
 - -cnFillOn turn on contour fill
 - -IbOrientation change labelbar orientation

load "\$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl"
load "\$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_csm.ncl"

begin

```
tf = addfile("Tstorm.cdf","r")
T = tf->t(0,:,:) ; Get first time step
T&lon@units = "degrees_east" ; Add some units
T&lat@units = "degrees_north"
```

```
wks = gsn_open_wks("ps","contour1b")
```

```
res = True
res@cnFillOn = True ; Turn on contour fill
res@lbOrientation = "Vertical"; Move labelbar
```

plot = gsn_csm_contour(wks,T,res)
end

Example <u>contour1d.ncl</u>

- Color map changed
- Title added
- Resources introduced:
 - -cnFillPalette change contour color map

"rainbow" color map

0	16	32	48	64	80	96	112	128	144	160	176
1	17	33	49	65	81	97	113	129	145	161	177
								100		100	470
2	18	34	50	66	82	98	114	130	146	162	178
3	19	35	51	67	83	99	115	131	147	163	179
				01		00			147	100	170
4	20	36	52	68	84	100	116	132	148	164	180
5	21	37	53	69	85	101	117	133	149	165	181
6	22	38	54	70	86	102	118	134	150	166	182
						100	440	105		107	100
7	23	39	55	71	87	103	119	135	151	167	183
8	24	40	56	72	88	104	120	136	152	168	184
	24	40	30	12		104	120	100	192	100	104
9	25	41	57	73	89	105	121	137	153	169	185
10	26	42	58	74	90	106	122	138	154	170	186
11	27	43	59	75	91	107	123	139	155	171	187
10				70		100	101	140	150	470	100
12	28	44	60	76	92	108	124	140	156	1/2	188
13	29	45	61	77	93	109	125	141	157	173	189
	23				30		120	141	107	170	100
14	30	46	62	78	94	110	126	142	158	174	
15	31	47	63	79	95	111	127	143	159	175	

load "\$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl" load "\$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_csm.ncl"

```
begin
 tf = addfile("Tstorm.cdf", "r")
 T = tf->t(0,:,:)
  T&lon@units = "degrees east" ; Add some units
  T&lat@units = "degrees north"
 wks = gsn open wks("ps","contour1d")
 ;;;qsn define colormap(wks,"rainbow") ; OLD WAY
                     = True
  res
  res@cnFillOn = True ; Turn on contour fill
  res@lbOrientation = "Vertical" ; Move labelbar
 res@cnFillPalette = "rainbow"
```

plot = gsn_csm_contour(wks,T,res)
end

'rainbow' color map

NCL Graphics topics for this lecture

- Line-by-line example of creating a contour plot script
- Interactive demo

Interactive demo

- Contours over a map
- The contour2x*.ncl slides following this one will be skipped and mimicked in the demo.
- If you want, download "contour_map_template.ncl" and "uv300.nc" from:

http://www.ncl.ucar.edu/Training/Webinars/NCL_Graphics/

Example <u>contour2a.ncl</u>

- gsn_csm_contour_map
- New data file used
- Contour plot overlaid on a cylindrical equidistant map
- Data must have lat/lon coordinate arrays, and "units" must be "degrees_east", "degrees_north"
- No resources introduced (yet)

load "\$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl"
load "\$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_csm.ncl"

begin

```
f = addfile("uv300.nc","r")
```

```
U = f -> U(0, :, :); U will have metadata attached.
```

```
printVarSummary(U) ; U has coord arrays and attrs
printVarSummary(U&lon) ; U&lon has "units" attribute
```

```
wks = gsn_open_wks("ps","contour2a") ; "contour2a.ps"
```

```
res = True ; No plot options set.
```

```
plot = gsn_csm_contour_map(wks,U,res)
```

end

Output from "printVarSummary(U)"

Output from "printVarSummary(U&lon)"

```
Variable: lon (coordinate)
Type: float
Total Size: 512 bytes
            128 values
Number of Dimensions: 1
Dimensions and sizes: [lon | 128]
Coordinates:
Number Of Attributes: 3
 units : degrees east
  long name : longitude
  short name : lon
 units : degrees east
```

Similarly, U&lat has "degrees_north" attribute

Example <u>contour2b.ncl</u>

- Contour levels set manually
- Resources introduced:
 - cnLevelSelectionMode mode for setting contour levels
 - If "cnLevelSelectionMode" is "ManualLevels", then use these 3 resources: cnMinLevelValF, cnMaxLevelValF, cnLevelSpacingF
- Can set "cnLevelSpacingF" by itself.

load "\$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl"
load "\$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_csm.ncl"

```
begin
f = addfile("uv300.nc","r")
T = f->U(0,:,:)
wks = gsn_open_wks("ps","contour2b")
res = True
res@cnLevelSelectionMode = "ManualLevels"
res@cnMinLevelValF = -8 ; Min contour
res@cnMaxLevelValF = 52 ; Max contour
res@cnLevelSpacingF = 2 ; Spacing
```

- ; res@cnLevelSelectionMode = "ExplicitLevels"
- ; res@cnLevels = (/-8, 0, 10, 15, 20, 30, 45, 50/)

plot = gsn_csm_contour_map(wks,U,res)
end

Example <u>contour2c.ncl</u>

- Contour fill turned on
- Color map changed

load "\$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl"
load "\$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_csm.ncl"

```
begin
  f = addfile("uv300.nc", "r")
  T = f -> U(0, :, :)
 wks = gsn open wks("ps", "contour2c")
                           = True
  res
  res@cnLevelSelectionMode = "ManualLevels"
  res@cnMinLevelValF
                         = -8; Min contour
  res@cnMaxLevelValF
                       = 52 ; Max contour
  res@cnLevelSpacingF
                       = 2 ; Spacing
 res@cnFillOn
                          = True
  res@cnFillPalette
                          = "MPL StepSeq"
```

plot = gsn_csm_contour_map(wks,U,res)
end

Example <u>contour2d.ncl</u>

- Contour and labelbar box lines turned off
- Only part of color map spanned
- Resources introduced:
 - -cnLinesOn turns contour lines on/off
 - -IbBoxLinesOn turns labelbar box lines on/off

0	16	32	48	Γ	efault:			128
1	17	33	49 En	d at ve	rv last c	olor (-1)		129
			Defaul	t.				
2		Start	at color	indev 2		98	114	
3	19	35	51		83	99	115	
4	20	36	52	68	84	100	116	
5	21	37	53	69	85	101	117	
6	22	38	54	70	86	102	118	
7	23	39	55	71	87	103	119	
8	24	40	56	72	88	104	120	
0	25		Ch	ange to	:	15	121	
J	23	Sta	arting at	color II	ndex 25		121	
10	26	42	58	74	90	106	122	
11	27	43	50	75	01	107	123	
	21	40	39	13	91	107	123	
12	28	44	60	76	92	108	124	
12	20	45	61	77	02	100	125	
	29	40			90	109	123	
14	30	46	62	78	94	110	126	
15	21	47	62	70	95	111	107	
10	31	4/	03	19	90	111	121	

load "\$NCARG ROOT/lib/ncarg/nclscripts/csm/gsn code.ncl" load "\$NCARG ROOT/lib/ncarg/nclscripts/csm/gsn csm.ncl" begin f = addfile("uv300.nc","r") T = f -> U(0, :, :)wks = gsn_open_wks("ps","contour2d") = True res res@cnLevelSelectionMode = "ManualLevels" res@cnMinLevelValF = -8 ; Min contour res@cnMaxLevelValF = 52 ; Max contour res@cnLevelSpacingF = 2 ; Spacing cmap = read_colormap_file("MPL_StepSeq") ; 130 x 3 RGB array res@cnFillPalette = cmap(25:,:) ; Start at index 25 = False ; contour lines off res@cnLinesOn res@lbBoxLinesOn = False ; labelbar box ; lines off

plot = gsn_csm_contour_map(wks,U,res)
end

Contouring exercises and examples

http://www.ncl.ucar.edu/Training/Workshops/Exercises/

Click on:

- Contour plot exercises
- Contours over map exercises (set 1)
- Contours over map exercises (set 2)

http://www.ncl.ucar.edu/Applications/

Look for "contour" categories:

- Contours: no map
- Contour effects
- Contour labels
- Labelbars

- Changing the labeling style of labelbars: <u>http://www.ncl.ucar.edu/Applications/labelbar.shtml#ex14</u>
- Setting contour levels to get "white in the middle": http://www.ncl.ucar.edu/Applications/color.shtml#ex15
- Controlling individual contours with shading (patterns): <u>http://www.ncl.ucar.edu/Applications/overlay.shtml#ex5</u>
- Controlling individual contour lines with color and/or thickness:

http://www.ncl.ucar.edu/Applications/conOncon.shtml#ex7

Types of lat/lon grids

Rectilinear (1D coordinate arrays)

Curvilinear (2D lat/lon coordinates)

WRF-ARW, POP, NARR, are examples of curvilinear data

Unstructured 1D lat/lon coordinates

MPAS is an example of unstructured data

More examples of unstructured grids

Special topic on contouring data

- One-dimensional (1D) coordinate arrays (rectilinear)
 <u>gsn_csm_xxxx</u> scripts automatically look for coordinate arrays
- 2D lon/lat arrays (curvilinear, WRF files, satellite data)
 - Use sfXArray, sfYArray resources
 - res@sfXArray = lon
 - res@sfYArray = lat

Use this method for WRF data

- Unstructured coordinates (1D X,Y,Z arrays)
 - Also use sfXArray, sfYArray resources
 - res@sfXArray = x
 - res@sfYArray = y

Might need: res@gsnAddCyclic = False

Example: 2D lat/lon arrays

- Assume file is from sea ice model: "iceh_mavg.0014-02.nc"
- Has a variable "hi" w/no coordinate arrays

```
Dimensions and sizes: [lat | 384] x [lon | 320]
Coordinates:
Number Of Attributes: 7
  time : 4804
  units : m
  long_name : grid box mean ice thickness
  coordinates : i j time
  _FillValue : 1e+30
  time_rep : averaged
```

• File does have two-dimensional lat/lon variables

```
float TLON ( lat, lon )
    long_name : grid center longitude
    units : degrees_east
float TLAT ( lat, lon )
    long_name : grid center latitude
    units : degrees_north
```

load "\$NCARG ROOT/lib/ncarg/nclscripts/csm/gsn code.ncl" load "\$NCARG ROOT/lib/ncarg/nclscripts/csm/gsn csm.ncl" begin f = addfile("iceh mavg.0014-02.nc","r") = f->hi(0,:,:) ; Ice coverage hi printVarSummary(hi) ; Note no coord arrays wks = gsn open wks("ps","ice") ; ice.ps qsn define colormap(wks, "BlAqGrYeOrReVi200") = True : Plot mods desired res res@sfXArray = f->TLON ; 2D lat/lon arrays, must = f->TLAT ; be same dimensions as "hi" res@sfYArray res@cnFillOn = True ; Turn on color fill res@mpMinLatF = 65 ; Specify min lat

plot = gsn_csm_contour_map_polar(wks,hi,res)
end

Setting sfX/YArray is equivalent to something you may have seen before: Use this method if you need to add a cyclic point! (res@gsnAddCyclic = True)

> hi@lat2d = f -> TLAThi@lon2d = f -> TLON

Example: 1D x,y,z data

- Assume file is from ARPEGE grid
- Has a variable "SUTOPRSU" with no coordinate arrays
- Variable has a time dimension and a degenerate dimension
- Separate file contains 1D lat, lon data

Example: 1D x,y,z data (cont'd)

Variable: bt42_lat (file variable) Type: double Number of Dimensions: 2 Dimensions and sizes: [jpjf | 1] x [jpif | 6232]

Variable: bt42_lon (file variable) Type: double Number of Dimensions: 2 Dimensions and sizes: [jpjf | 1] x [jpif | 6232] load "\$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl"
load "\$NCARG ROOT/lib/ncarg/nclscripts/csm/gsn csm.ncl"

begin

```
g = addfile("arpege_grd.nc","r")
```

```
f = addfile("IBF_1m_000101_002012_SUTOPRSU.nc","r")
```

```
wks = gsn_open_wks("x11","arpege")
gsn_define_colormap(wks,"BlAqGrYeOrReVi200")
```

"RasterFill" mode can be *much* faster.

	res	=	True		
	res@sfXArray res@sfYArray	=	g->bt42_lon(0,:) g->bt42_lat(0,:)		; 1D arrays
	res@cnFillOn	=	True ;	, I	Turn on contour fill
	res@cnFillMode res@cnRasterSmoothingOn	=	"RasterFill" ; True		Smooth raster contours
	res@cnLinesOn	=	False ;	, 1	Turn off contour lines
	res@cnLevelSelectionMode res@cnLevels	=	"ExplicitLevels" fspan(0,30,201)		; Set contour levels.
	res@lbBoxLinesOn	=	False ; Turn	1	off box lines
	res@mpProjection	=	"LambertEqualArea	ì "	; Map projection
e	contour = gsn_csm_contour_ nd	_ma	ap(wks,f->SUTOPRSU	J (0,0,:),res)

0 2.4 4.8 7.2 9.6 12 14.4 16.8 19.2 21.6 24 26.4 28.8

Raster contours look better if you have a large grid and/or lots of contours

0 2.4 4.8 7.2 9.6 12 14.4 16.8 19.2 21.6 24 26.4 28.8

Examples of contouring non-rectilinear data

http://www.ncl.ucar.edu/Applications/

Click on "non-uniform grids/random data

- Adaptive grids
- ORCA grids
- Triangular meshes
- etc.

Sample ".hluresfile"

! Color map *wkColorMap

: rainbow

*Font : times-roman

! Function code [Default is a ~]
*TextFuncCode ::

! Set size of x11 window
*wkWidth : 1000
*wkHeight : 1000

Common mistakes or problems

- "cnLineColour" is not a resource in ContourPlot at this time"
 - Misspelling a resource, "cnLineColour"
 - Using the wrong resource with the wrong plot (i.e. using "vcRefMagnitudeF" in a contour plot).
- "The units attribute of the Y coordinate array is not set to one of the allowable units values (i.e. 'degrees_north'). Your latitude labels may not be correct."
 - Lack of (or wrong) "units" attribute attached to your data's coordinate arrays

More common mistakes or problems

- Data values in plot look off-scale
 - Maybe "_FillValue" attribute not set or not correct.
- "_NhlCreateSplineCoordApprox: Attempt to create spline approximation for Y axis failed: consider adjusting trYTensionF value"
 - Data is too irregularly spaced in the X or Y direction. May need to subset it.

Debugging tips

- Use interactive mode to try "quick" things that you don't understand in NCL.
- Otherwise, use "batch" script mode. That is, write a script and then run it:

ncl myscript.ncl

• Start with an existing script, if possible. You can use templates provided at:

http://www.ncl.ucar.edu/Applications/Templates/

- Start small, don't set a bunch of resources all at once
- Group resources by type

Introduction to NCL Graphics

More debugging tips

- If graphics look wrong, comment out a bunch of resources and add them back slowly to see where problem is
- Use "printVarSummary" to examine variables
 - Missing coordinate arrays
 - No "_FillValue" or wrong "_FillValue"
- To further examine data, use:
 - print(min(x)) and print(max(x)) ; Minimum/maximum of data
 - printMinMax(x,0)
 - print(num(ismissing(x))) ; Count number of msg vals
- Read errors and warnings carefully
- Use an enhanced UNIX editor! ^(C)

