Introduction to NCL Graphics Vectors and Overlays

Part III in the series

November 10, 2014 Mary Haley

Notes

- Third in a series of five (?) intro lectures on NCL Graphics
- Two more webinars: *panels* & *primitives Nov* 12
- Lectures loosely based ones used in NCL Workshops
- Geared towards new users of NCL. . .but with tips for advanced users

Goals for this series of lectures

- Get comfortable with creating NCL graphics
- Learn common things people do with NCL graphics
- Get tips for editing, debugging, creating publicationquality graphics
- Get questions answered

Assumptions

You have familiarity with:

- -basic NCL language features
- -NCL array syntax
- -reading data off a NetCDF file using NCL
- -basic structure of an NCL graphics script
- -NCL/NetCDF data model
- -UNIX

NCL Graphics topics for this lecture

Gallery

- Description of NCL vector plots
- Line-by-line vector plot example
- Demo
- Description of overlay plots
- Line-by-line overlay plot example
- Demo

Vector types

- 1. Line
- 2. Curly
- 3. Wind barb

15 ───≫

"masked" lambert conformal plot

Stick Plot

Curly vectors colored by magnitude

Overlay plots are plots that are drawn on top of other plots.

Sea Surface Temperatures and 1000 mb Winds

lon = 2.8125

Velocity Potential

lon = 8.4375

------lon = 14.0625 -----lon = 19.6875

Overlaying shaded contours on filled contours

Streamlines over contours

Ufuk Turuncoglu, ITU Turkey Climate Change Scenarios

wrfout_d01_2005-12-14_13:00:00.nc

Surface Temperature (degF) Sea Level Pressure (hPa) Wind (kts)

Multiple overlays (contours and vectors)

Velocity Potential via Spherical Harmonics

CCSM4 data Six fields overlaid:

Ice thickness (filled contours)

Sea surface temperature (filled contours)

Topo map (filled contours)

Sea level pressure (line contours)

UV winds

Vertically-integrated clouds (partially transparent filled contours)

Gary Strand, NCAR/CGD

NCL Graphics topics for this lecture

• Gallery

- Description of NCL vector plots
- Line-by-line vector plot example
- Demo
- Description of NCL overlay plots
- Line-by-line overlay plot example
- Demo

Vector plots

- Requires U, V two-dimensional arrays of the same size
- Includes a "reference annotation" box
- Can be colored by magnitude or another field
- Line, curly, wind barbs available
- When you call gsn_csm_xxxx_map, this is an overlay plot

Vector types

- 1. Line
- 2. Curly
- 3. Wind barb
- 4. Colored by another field

Sample line vector over map plot

Sample of curly vectors colored by magnitude

NCL Graphics topics for this lecture

- Gallery
- Description of NCL vector plots
- Line-by-line vector plot example
- Demo
- Description of NCL overlay plots
- Line-by-line overlay plot example
- Demo

Example <u>vector1a.ncl</u>

- Generate dummy (10 x 10) U,V arrays
- No plot resources set
- gsn_csm_vector
- Scripts can be found at:

http://www.ncl.ucar.edu/Training/Webinars/NCL_Graphics/VectorOverlayDemo/

load "\$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl"
load "\$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_csm.ncl"

Optional in NCL V6.2.0 and later

begin

```
;---Generate dummy u, v arrays
npts = 10
ii = ispan(10,10*npts,10)
u = conform_dims((/npts,npts/),ii,0)
v = conform_dims((/npts,npts/),ii,1)
```

```
;---Open an X11 window
  wks = gsn_open_wks("x11","vector1a")
```

```
;---Call the plotting function
   vector = gsn_csm_vector(wks,u,v,False)
end
```

u	

;-		-Generate dummy u, v arrays
n	=	10
i	=	ispan(10,100,n)
u	=	<pre>conform_dims((/n,n/),i,0)</pre>
v	=	<pre>conform_dims((/n,n/),i,1)</pre>

100	100	100	100	100	100	100	100	100	100
90	90	90	90	90	90	90	90	90	90
80	80	80	80	80	80	80	80	80	80
70	70	70	70	70	70	70	70	70	70
60	60	60	60	60	60	60	60	60	60
50	50	50	50	50	50	50	50	50	50
40	40	40	40	40	40	40	40	40	40
30	30	30	30	30	30	30	30	30	30
20	20	20	20	20	20	20	20	20	20
10	10	10	10	10	10	10	10	10	10

					v				
10	20	30	40	50	60	70	80	90	100
10	20	30	40	50	60	70	80	90	100
10	20	30	40	50	60	70	80	90	100
10	20	30	40	50	60	70	80	90	100
10	20	30	40	50	60	70	80	90	100
10	20	30	40	50	60	70	80	90	100
10	20	30	40	50	60	70	80	90	100
10	20	30	40	50	60	70	80	90	100
10	20	30	40	50	60	70	80	90	100
10	20	30	40	50	60	70	80	90	100

10 Arrows are (100,70) (100.80) (100,60) (100.90)(100.100)(100.10)(100.20)(100.30)(100.40)(100.50)8 centered on (90, 50)(90, 60)(90.70)(90.80)(90.90)(90.100)(90, 10)(90, 20)(90, 30)(90.40)their locations (80.60) (80.70) (80.80)(80.90) (80, 30)(80, 40)(80, 50)(80, 10)(80, 20)(blue dot) **▶**7₩ 6 ×71 \rightarrow (70.60) (70.70)(70.10)(70.20)(70.30)(70.40)(70.50)(70.80) (70.90)(70.100)• , **→**₹ ->> No coordinates (60, 50)(60, 60)(60,70)(60.80)(60.90) (60, 40)(60, 10)(60, 20)(60, 30)•71 **•**7 4 7 provided, ->> (50, 50)(50, 60)(50.70)(50.90)(50, 10)(50, 20)(50, 30)(50, 40)(50.80)so 0 to *n*-1 are • --> (40,70) (40.30)(40.40)(40,50)(40,60) (40.80 (40.90)(40.10)(40, 20)used (0 to 9)2 **•**71 **•**7 •7 (30, 50)(30, 60)(30,70)(30.80)(30.90)(30, 10)(30, 20)(30, 30)(30, 40)(30.100)7 ,* (20.50)(20.10)(20.30)(20.40)(20.60)(20.70)(20.80)(20.90)(20, 100)(20, 20)4 A Î Â $\mathbf{0}$ f 4 4 (10.10)(10, 20)(10, 30)(10.40)(10, 50)(10,60)(10,70)(10.80)(10.90)(10, 100)2 6 8 10 0 4 141.4

Reference Vector

Example <u>vector1b.ncl</u>

 Change the vector reference length with vcRefLengthF

load "\$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl"
load "\$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_csm.ncl"

```
begin
;---Generate dummy u, v arrays
 npts = 10
  ii = ispan(10,10*npts,10)
 u = conform dims((/npts,npts/),ii,0)
      = conform dims((/npts,npts/),ii,1)
  V
;---Open an X11 window
 wks = gsn open wks("x11", "vector1b")
;---Set a vector resource
 res = True
  res@vcRefLengthF = 0.10 ; NCL chose 0.06
;---Call the plotting function
```

```
vector = gsn_csm_vector(wks,u,v,res)
end
```


Example <u>vector1c.ncl</u>

- Change which vector magnitude (vcRefMagnitudeF) is rendered in length specified by vcRefLengthF
- Default is to render the longest vector (the one with maximum magnitude) in this reference length

load "\$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl"
load "\$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_csm.ncl"

```
begin
npts = 10
ii = ispan(10,10*npts,10)
u = conform_dims((/npts,npts/),ii,0)
v = conform_dims((/npts,npts/),ii,1)
wks = gsn_open_wks("x11","vector1c")
res = True
res@vcRefLengthF = 0.10 ; NCL chose 0.06
res@vcRefMagnitudeF = 100 ; max is 141.4
```

```
vector = gsn_csm_vector(wks,u,v,res)
end
```


Example <u>vector1d.ncl</u>

- Increase size of U, V to create dense plot
- Thin the vectors with vcMinDistanceF

load "\$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_code.ncl"
load "\$NCARG_ROOT/lib/ncarg/nclscripts/csm/gsn_csm.ncl"

```
begin
;---Generate larger (more dense) dummy u, v arrays
 npts = 100
 ii = ispan(1,npts,1)
 u = conform dims((/npts,npts/),ii,0)
 v = conform dims((/npts,npts/),ii,1)
 wks = gsn open wks("x11", "vector1d")
                     = True
  res
  res@vcRefLengthF = 0.10
 res@vcMinDistanceF = 0.02 ; Thin the vectors
```

```
vector = gsn_csm_vector(wks,u,v,res)
end
```


No thinning of vectors

res@vcMinDistanceF = 0.02

Vector plot examples

NCL Home Page -> Examples -> Vectors NCL Home Page -> Examples -> Vector effects

http://www.ncl.ucar.edu/Applications/vector.shtml http://www.ncl.ucar.edu/Applications/veceff.shtml

NCL Graphics topics for this lecture

- Gallery
- Description of NCL vector plots
- Line-by-line vector plot example
- Demo
- Description of NCL overlay plots
- Line-by-line overlay plot example
- Demo

Demo

- Vectors over a map gsn_csm_vector_map
- Will use "uv300.nc" data file
- Scripts (vector2x.ncl) and data file available from:

NCL Home Page -> Support -> Webinars -> NCL Graphics

http://www.ncl.ucar.edu/Training/Webinars/NCL_Graphics/VectorOverlayDemo/

NCL Graphics topics for this lecture

- Gallery
- Description of NCL vector plots
- Line-by-line vector plot example
- Demo
- Description of NCL overlay plots
- Line-by-line overlay plot example
- Demo

Overlays

- An "overlay plot" is a plot overlaid on top of a base plot
- Two types of overlays:
 - 1. "Transform" one plot into data space of another
 - 2. Simply "line up" two plots at their four corners
- Method #1 uses data space of plots' axes
- Method #2 doesn't do any transformation

"overlay" procedure

• overlay joins the "top" plot to "base" plot

overlay(base_plot,top_plot)

- The two plots must either have:
 - 1. similar data spaces
 - 2. the "tfDoNDCOverlay" resource set to True
- The *top_plot* main title and tickmarks will not be part of *base_plot*

wks = gsn_open_wk	s ("x11","xy")
res	= True
res@vpWidthF	= 0.70
res@vpHeightF	= 0.25
res@xyLineThickne	ssF = 3
res@xyLineColor	= "Purple"
res@trXMaxF	= dimsizes(y1)
<pre>xy1 = gsn_csm_y(w</pre>	vks,y1,res)
res@xyLineColor	= "Brown"
res@trXMaxF	= dimsizes(y2)
xy2 = gsn_csm_y(w	vks,y2,res)
res@xyLineColor	= "ForestGreen"
res@trXMaxF	= dimsizes(y3)
xy3 = gsn_csm_y(w	vks,y3,res)
overlay(xy3,xy1)	; Overlay xy1 on xy3
overlay(xy3,xy2)	; Overlay xy2 on xy3
draw(xy3)	; Draws all three plots in one data space
<pre>frame(wks)</pre>	; Don't forget to call this!

xy1 is purple, xy2 is brown, xy3 is green


```
wks = gsn_open_wks("x11","xy")
           = True
res
res@vpWidthF = 0.70
res@vpHeightF = 0.25
res@xyLineThicknessF = 3
res@tfDoNDCOverlay = True ; line up four corners of each plot
res@xyLineColor = "Purple"
res@trXMaxF = dimsizes(y1)
xy1 = gsn_csm_y(wks,y1,res)
res@xyLineColor = "Brown"
res@trXMaxF = dimsizes(y2)
xy2 = qsn \ csm \ y(wks, y2, res)
res@xyLineColor = "ForestGreen"
res@trXMaxF = dimsizes(y3)
xy3 = qsn csm y(wks, y3, res)
overlay(xy3,xy1) ;---Overlay xy1 on xy3
overlay(xy3,xy2) ;---Overlay xy2 on xy3
draw(xy3) ;---Draws all three plots
frame(wks)
```



```
;---Generate dummy u, v, w arrays
N = 20
PI = 3.14159
I = ispan(0,N-1,1)
u = 10. * cos(conform_dims((/N,N/),(2.0 * PI / N) * I, 0))
v = 10. * cos(conform_dims((/N,N/),(2.0 * PI / N) * I, 1))
w = u^2+v^2
```

wks = gsn_open_wks("x11","overlay1a")

<pre>vcres@vcLineArrowColor = "Brown" vcres@tiMainString = "Vector plot" vector = gsn_csm_vector(wks,u,v,vcres) cnres = True ; contour resources cnres@cnLineColor = "NavyBlue" cnres@tiMainString = "Contour plot"</pre>
<pre>vcres@tiMainString = "Vector plot" vector = gsn_csm_vector(wks,u,v,vcres) cnres = True ; contour resources cnres@cnLineColor = "NavyBlue" cnres@tiMainString = "Contour plot"</pre>
<pre>vector = gsn_csm_vector(wks,u,v,vcres) cnres = True ; contour resources cnres@cnLineColor = "NavyBlue" cnres@tiMainString = "Contour plot"</pre>
<pre>cnres = True ; contour resources cnres@cnLineColor = "NavyBlue" cnres@tiMainString = "Contour plot"</pre>
contour = gsn_csm_contour(wks,w,cnres)
overlay(vector,contour) ; overlay contour plot on vector plot
<pre>draw(vector) ; This will draw both vector and contour plot frame(wks)</pre>

Vector plot

Contour plot

Vector plot


```
;---Generate dummy u, v, w arrays
 N = 20
 PI = 3.14159
 I = ispan(0, N-1, 1)
    = 10. * cos(conform dims((/N,N/),(2.0 * PI / N) * I, 0))
 u
 v = 10. * \cos(\operatorname{conform} \operatorname{dims}((/N,N/),(2.0 * PI / N) * I, 1))
 w = u^{2}+v^{2}
 wks = gsn open wks("x11","overlay1b")
                              = True ; vector resources
 vcres
 vcres@vcLineArrowColor = "Brown"
 vcres@tiMainString = "Vector plot"
 vector = gsn csm vector(wks,u,v,vcres)
 cnres
                     = True
                                            ; contour resources
 cnres@cnLineColor = "NavyBlue"
 cnres@tiMainString = "Contour plot"
 contour = gsn csm contour(wks,w,cnres)
 overlay(contour,vector) ; overlay vector plot on contour plot
 draw(contour); This will draw both contour and vector plot
 frame(wks)
```



```
;---Generate dummy u, v, w arrays
 N = 20
 PI = 3.14159
 I = ispan(0, N-1, 1)
    = 10. * cos(conform dims((/N,N/),(2.0 * PI / N) * I, 0))
 u
 v = 10. * \cos(\operatorname{conform} \operatorname{dims}((/N,N/),(2.0 * PI / N) * I, 1))
 w = u^{2}+v^{2}
 wks = gsn open wks("x11","overlay1c")
                             = True ; vector resources
 vcres
 vcres@vcLineArrowThicknessF = 3.0 ; 3x as thick
 vcres@tiMainString = "Vector plot"
 vector = gsn csm vector(wks,u,v,vcres)
 cnres
                      = True
                                           ; contour resources
 cnres@cnFillOn = True
                                           : turn on color fill
 cnres@lbOrientation = "Vertical"; make labelbar vertical
 cnres@tiMainString = "Contour plot"
 contour = qsn csm contour(wks,w,cnres)
 overlay(contour,vector) ; overlay vector plot on contour plot
 draw(contour); This will draw both contour and vector plot
 frame(wks)
```

Contour plot

Overlay examples

NCL Home Page -> Examples -> overlay http://www.ncl.ucar.edu/Applications/overlay.shtml

Can also go to the "functions" link on Examples page and search for "overlay".

Lots of examples use this procedure.

NCL Graphics topics for this lecture

- Gallery
- Description of NCL vector plots
- Line-by-line vector plot example
- Demo
- Description of NCL overlay plots
- Line-by-line overlay plot example
- Demo

Demo

- Overlays
- Will use "era40.pl.t85.tuvo.200001.nc"
- Scripts (overlay3x.ncl) and data file available from:

NCL Home Page -> Support -> Webinars -> NCL Graphics http://www.ncl.ucar.edu/Training/Webinars/NCL_Graphics/VectorOverlayDemo

Introduction to NCL Graphics