
Data Processing

Dennis Shea
National Center for Atmospheric Research

  NCAR is sponsored by the National Science Foundation

Grid(s)
•  Grid (Mesh)

–  a well-defined spatial structure
•  Common Grids: Models & Reanalyses

–  Rectilinear
§  1x1, 2x3, gaussian, FV, Global Reanalysis
§  x(…,lat,lon), lat(lat), lon(lon)

–  Curvilinear
§  WRF, POP, GODAS, RegCM, NARR
§  y(…,nlat,mlon), lat2d(nlat,mlon), lon2d(nlat,mlon)

–  Unstructured
§  SE (Spectral Element), FE, MPAS
§  z(…,npts), lat(npts), lon(npts)

•  Why different grids?
–  advances in computer architecture
–  computational efficiency
–  addressing pole singularities
–  better representation physics and/or dynamical core

  Longitude coordinate variable (1D)

  Latitude coordinate variable (1D
)

Generic Rectilinear Grid: lat[*], lon[*]

  lat, lon need NOT be equally spaced: gaussian, MOM, FV

Sample Curvilinear Grid: Early POP

   lat[*][*], lon[*][*]

Sample Curvilinear Grid: NARR

   lat[*][*], lon[*][*]

Unstructured Grid: ICON

Unstructured Grid: MPAS

Regrid & Comments
•  Regrid

–  interpolation of one well defined spatial structure
to another; horizontal or vertical

•  General Comments
–  quantitative evaluation of data on different grids

generally requires regridding to a common grid
–  regrid low res (5x5) to high res (1x1) does NOT

provide more information than the low res (5x5)
–  generally: interpolate high res grid to low res
–  derive quantities on original grid then regrid
–  vector quantities (eg, u,v) should be regridded

together. Alternatively, derive a scalar quantity on
the original grid (eg: divergence, vorticity),
interpolate the scalar quantity; then rederive the
vector components from the interpolated scalar

–  extrapolation should be done with caution

Common Regrid Methods

•  Method: appropriate for spatial structure and
 intended usage

–  smooth variables (eg: T, SLP): ‘any’ method can be used
–  fractal (eg: 3-hr PRC): some form of local areal avg
–  flux quantities: conservative
–  categorical: nearest neighbor (ideally use mode)

•  Functions: http://www.ncl.ucar.edu/Document/Functions/regrid.shtml
•  Examples: https://www.ncl.ucar.edu/Applications/regrid.shtml
•  http://www.ncl.ucar.edu/Applications/ESMF.shtml

Regrid: bilinear interpolation
linint2_Wrap (linint2)

•  rectilinear grids only: Cartesian, global or limited area
•  most commonly used
•  use when variable is reasonably smooth
•  uses the four closest grid points of source grid
•  missing data allowed but not filled in
•  extrapolation is not performed
•  _Wrap preserves attributes; creates coordinate variables

 LON = … ; from a file, function or manually create
 LAT = …

 f = addfile (“T2m.nc", "r")
 T = f->T2m
 TBLI = linint2_Wrap(T&lon, T&lat, T, True, LON, LAT, 0)
 printVarSummary(TBLI)

Bilinear Interpolation
The four red dots show the data points and
  the green dot is the point at which we want to interpolate

  source: en.wikipedia.org/wiki/wiki/Bilinear_interpolation

Regrid: areal conservative interpolation
 area_conserve_remap_Wrap

•  global rectilinear grids only
•  _Wrap preserves attributes; creates coordinate variables
•  missing data (_FillValue) *NOT* allowed

f = addfile (“GPCP.nc", "r")
p = f->PRC
P = area_conserve_remap_Wrap (p&lon, p&lat, p \
 ,newlon, newlat, False)

In particular, use for (say) flux or precipitation interpolation

regrid: areal average interpolation
area_hi2lores_Wrap

•  rectilinear grids; can be limited area
•  _Wrap preserves attributes; creates coordinate variables
•  missing data allowed
•  designed for TRMM data

f = addfile (trmm.nc", "r")
p = f->PRC
P = area_hi2lores_Wrap (p&lon, p&lat, p, True, wlat, LON, LAT, 0)

NOT strictly ‘conservative’but close for (say) 50S to 50N

Use area_hi2lores_Wrap for fractal fields => lower res

Regrid: Spherical Harmonics (Scalars)
 g2gsh/g2fsh/f2gsh/f2fsh_Wrap

•  global rectilinear
•  no missing values allowed
•  use caution with bounded data; RH (0-100) , q (0..)

–  may ‘over-shoot’ bound; reset to low or upper bound
•  triangular truncation
•  _Wrap preserve attributes; create coordinate var

 f = addfile (“T2m.nc", "r")
 T256 = f->T ; (time,256,512)
 Tg = g2gsh_Wrap (T256, (/64,128/), trunc) ; trunc=42
 Tf25 = g2fsh_Wrap (T256, (/73,144/))

 Ta = f2fsh_Wrap(Tf25, (/50,100/))
 Tb = f2gsh_Wrap(Tf25, (/64,128/), trunc)

Regrid: Spherical Harmonics (Vectors)
 g2gshv/g2fshv/f2gshv/f2fshv_Wrap

•  global rectilinear
•  no missing values allowed
•  triangular truncation
•  procedures (not functions; historical reasons)
•  _Wrap preserve attributes; create coordinate var

 f = addfile (“CESM_gau.nc", "r")
 u = f->U
 v = f->V
 uNew = new ((/nt,jlat,ilon/), typeof (u))
 vNew = new ((/nt,jlat,ilon/), typeof (v))
 g2gshv_Wrap (u,v, uNew,vNew, trunc)

Regrid: Rectilinear -> Simple Curvilinear
•  rgrid2rcm: rectilinear -> simple curvilinear
•  brute force search algorithm; not particularly fast
•  bilinear interpolation
•  missing values allowed but not filled in
•  _Wrap preserve attributes; create coordinate var

 f = addfile (”curvilinear_file.nc", "r") ; destination grid
 lat2d = f->xlat ; lat2d[*][*] , (nlat,mlon)
 lon2d = f->xlon ; lon2d[*][*] , (nlat,mlon)

 frl = addfile (”rectilinear_file.nc", "r") ; source grid
 x = frl->X ; x(…,lat,lon), x&lat, x&lon

 xgrd = rgrid2rcm_Wrap (x&lat, x&lon, x, lat2d, lon2d, 0)

Regrid: Simple Curvilinear -> Rectilinear
•  rcm2rgrid: simple curvilinear -> rectilinear
•  brute force search algorithm; not particularly fast
•  bilinear interpolation
•  missing values allowed but not filled in
•  _Wrap preserve attributes; create coordinate var
 f = addfile (”curvilinear_file.nc", "r") ; source grid
 lat2d = f->xlat ; lat2d[*][*] , (nlat,mlon)
 lon2d = f->xlon ; lon2d[*][*] , (nlat,mlon)
 z = f->Z ; z(…,nlat,mlon)

 frl = addfile (”rectilinear_file.nc", "r") ; destination grid
 lat = frl->lat
 lon = frl->lon

 zgrd = rcm2rgrid_Wrap (lat2d, lon2d, z, lat, lon, 0)

Regrid: NCL-ESMF
•  Integrated in conjunction with NOAA Cooperative Institute

for Research in Environmental Sciences
•  Available since NCL V6.1.0 (May 2012)
•  Works with rectilinear, curvilinear, unstructured grids
•  Multiple interpolation methods available

–  Bilinear
–  Conservative
–  Patch
–  Nearest neighbor

•  Can handle masked points
•  Better treatment for values at poles
•  Works on global/regional grids
•  Satellite swath, random
•  Can run in parallel or single-threaded mode

Regrid: NCL-ESMF
•  Most general & highest quality regridding

•  Functions: http://www.ncl.ucar.edu/Document/Functions/ESMF.shtml
•  Examples: https://www.ncl.ucar.edu/Applications/regrid.shtml

•  Basic Steps:
–  Reading or generating the "source" grid.
–  Reading or generating the "destination" grid.
–  Creating NetCDF files that describe these two grids (auto)
–  *Generating a NetCDF file that contains the weights*

§  Weight file can be reused/shared
–  Applying weights to data on the source grid, to interpolate

the data to the destination grid (simple function; very fast).
–  Copying over any metadata to the newly regridded data.

Regrid: NCL-ESMF: Methods
•  "bilinear" - the algorithm used by this application to generate

the bilinear weights is the standard one found in many
textbooks. Each destination point is mapped to a location in
the source mesh, the position of the destination point relative
to the source points surrounding it is used to calculate the
interpolation weights.

•  "patch" - this method is the ESMF version of a technique
called "patch recovery" commonly used in finite element
modeling. It typically results in better approximations to
values and derivatives when compared to bilinear
interpolation.

•  "conserve" - this method will typically have a larger
interpolation error than the previous two methods, but will do
a much better job of preserving the value of the integral of
data between the source and destination grid.

•  "neareststod” - Available in version 6.2.0 and later. The
nearest neighbor methods work by associating a point
in one set with the closest point in another set.

Sample ESMF Code: Curv ->Rect (1)

  load "$NCARG_ROOT/lib/ncarg/nclscripts/esmf/ESMF_regridding.ncl"

   InterpMethod = "bilinear" ; "bilinear", "conserve", "patch"
   srcFileName = "merged_AWIP32.1979010100.3D.NARR.grb"
  
   sfile = addfile(srcFileName,"r") ; SOURCE
   x = sfile->FOO ; (nlat,mlon)
   lat2d = sfile->gridlat ; (nlat,mlon)
   lon2d = sfile->gridlon
   nmsg = num(ismissing(x)) ; # of msg values

   x@lat2d = lat2d ; These attributes will be used by
   x@lon2d = lon2d ; ESMF_regrid for the source grid

  ;---Create the DESTINATION rectilinear lat[*]/lon[*] arrays.
   lat = fspan(1.0, 85.0 ,337) ; nlat=337
   lon = fspan(150.0,358.5 ,831) ; nlon-831

;---Create regrid options
   Opt = True
   Opt@InterpMethod = InterpMethod
   Opt@WgtFileName = "NARR_to_Rect.WgtFile_"+InterpMethod+".nc”
   if (nmsg.gt.0) then
   Opt@SrcMask2D = where(ismissing(x),0,1)
   end if
   Opt@SrcRegional = True
   Opt@DstGridType = "rectilinear"
   Opt@DstGridLat = lat
   Opt@DstGridLon = lon
   Opt@DstRegional = True

   Opt@ForceOverwrite = True ; my personal favorites
   Opt@RemoveSrcFile = True ; remove grid description files
   Opt@RemoveDstFile = True
   Opt@NoPETLog = True ; 6.2.1 onward
   Opt@Debug = True

  ;---Perform the regrid: NARR ==> rectilinear (_reclin)

 x_reclin = ESMF_regrid(x, Opt)

Sample ESMF Code: Curv ->Rect (2)

Regrid ESMF: ICON

Regrid ESMF: ICON

Regrid: ESMF: EASE

Regrid: ESMF: NARR

Regrid: ESMF: WRF (1 deg)

Regrid: ESMF: WRF (0.5 deg)

Regrid ESMF: Swath to WRF Grid: Australia Snow

Regrid ESMF: Random to Grid

Regrid ESMF: Categorical

linint2_points_Wrap: Arbitrary Cross-Sec
Interpolation

 diri = “/Data/Cloud_Sat/”
 fili = “cfadDbze94_200606-200612.nc”
 f = addfile(diri+fili , "r")
 x = f->cfadDbze94 ; x(time,alt40,lat,lon)
 specify lat and lon points
 lonx = (/ -175, -165.4, -156.4, -147.1, -136.6, -125.0/)
 laty = (/ -20, -7.9, 4.4, 16.6, 28.3, 38.0/)
 ; interpolate data to given laty/lonx
 xsec = linint2_points_Wrap (x&lon, x&lat, x, False, lonx,laty, 0)
 ; [alt40 | 40] x [pts | 6]

interpolate rectilinear grid to arbitrary points

linint2_points: Cross-section

poisson_grid_fill
•  replaces all _FillValue grid ponts

-  Poisson’s equation solved via relaxation
-  original values unchanged; boundary conditions
-  works on any grid with spatial dimensions [*][*]

 in = addfile (Ocean.nc","r")
 sst = in->SST
 poisson_grid_fill (sst, True, 1, 1500, 0.02, 0.6, 0)

poisson_grid_fill

Regrid: Binning
bin_sum: frequently used with satellite swaths

   131
  HDF-EOS
   files

   swath
   data

Regrid: Binning
bin_sum: could be used to regrid (local area avg)

 Vertical Interpolation
Functions:
 vinth2p, vinth2p_ecmwf: hybrid (sigma) to isobaric levels
 int2p_n_Wrap: any vertical coordinate to another

Examples:
 http://www.ncl.ucar.edu/Applications/vert_interp.shtml
 http://www.ncl.ucar.edu/Applications/isent.shtml

Vertical interpolation: POP: int2p_n

