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Introduction to NCL 

Important note 

•  I	
  am	
  hard-­‐of-­‐hearing	
  in	
  both	
  ears	
  and	
  read	
  lips.	
  

•  Ques7ons	
  welcome!	
  Raise	
  hand	
  and	
  get	
  my	
  

a=en7on	
  first.	
  You	
  may	
  need	
  to	
  gesture	
  wildly.	
  

•  If	
  I	
  don’t	
  understand,	
  speak	
  up	
  slightly	
  and	
  more	
  

slowly.	
  You	
  shouldn’t	
  have	
  to	
  yell.	
  	
  J	
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Thanks 

•  Karin	
  Meier-­‐Fleischer,	
  DKRZ	
  
− NCL	
  Tutorial	
  is	
  well-­‐wri=en,	
  lots	
  of	
  
examples!	
  

• Michael	
  BöPnger,	
  DKRZ	
  

• Niklas	
  Röber,	
  DKRZ	
  
•  Antje	
  Weitz,	
  Bjorn	
  Stevens,	
  MPI	
  

• Wiebke	
  Boehm,	
  MPI	
  





Introduction to NCL 

Purpose of this workshop 

•  Introduce	
  you	
  to	
  NCL	
  and	
  its	
  language	
  features	
  
•  Show	
  you	
  how	
  to	
  examine	
  and	
  read	
  NetCDF	
  files	
  

•  Show	
  you	
  how	
  to	
  create	
  high-­‐quality	
  visualiza7ons	
  
with	
  NCL	
  

•  Lab	
  exercises:	
  focused	
  on	
  reading	
  NetCDF	
  files	
  and	
  
crea7ng	
  two-­‐dimensional	
  visualiza7ons	
  and	
  
anima7ons	
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Purpose of this lecture 

•  Give	
  you	
  a	
  quick	
  overview	
  of	
  NCL	
  
•  Introduce	
  you	
  to	
  NCL	
  language	
  basics	
  
•  Discuss	
  importance	
  of	
  metadata	
  

•  Demonstrate	
  looking	
  at	
  NetCDF	
  files	
  

•  Demonstrate	
  reading	
  variables	
  from	
  NetCDF	
  files	
  

•  Do	
  a	
  website	
  tour	
  (if	
  there’s	
  7me)	
  

Geared	
  towards	
  new	
  users	
  of	
  NCL,	
  but	
  all	
  users	
  are	
  welcome.	
  
Assump9on	
  that	
  you	
  have	
  some	
  knowledge	
  of	
  programming. 
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Topics 

•  Overview	
  of	
  NCL	
  
•  NCL	
  language	
  basics	
  
− How	
  to	
  run	
  NCL	
  
− Language	
  syntax	
  
− Variables	
  (scalars	
  and	
  arrays)	
  

•  Metadata	
  
•  NetCDF	
  files	
  
•  Website	
  tour	
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  run	
  NCL	
  
− Language	
  syntax	
  
− Variables	
  (scalars	
  and	
  arrays)	
  

•  Metadata	
  
•  NetCDF	
  files	
  
•  Website	
  tour	
  



Introduction to NCL 

First . . . an informal survey 

•  What	
  so_ware	
  do	
  you	
  use?	
  

− Fortran,	
  C/C++	
  

− Scrip7ng	
  languages	
  and	
  tools:	
  Matlab,	
  IDL,	
  Python,	
  R,	
  
Ruby,	
  Java,	
  NCL,	
  Climate	
  data	
  operators	
  (CDO),	
  NetCDF	
  
operators	
  (NCO),	
  GrADS,	
  Ncview,	
  Avizo,	
  ParaView	
  

•  What	
  types	
  of	
  data	
  do	
  you	
  work	
  with?	
  
NetCDF,	
  HDF,	
  HDF-­‐EOS,	
  GRIB,	
  Shapefiles	
  

•  Tell	
  us	
  about	
  yourself:	
  name,	
  where	
  you	
  work,	
  
what	
  kind	
  of	
  data	
  or	
  models	
  do	
  you	
  work	
  with,	
  
what	
  so_ware	
  do	
  you	
  currently	
  use?	
  



•  Users range from grad students doing 
individual research to programmers in 
scientific organizations working on large 
scale projects 
 

•  UNIX binaries & source available, free 
 

•  Extensive website, training workshops 

NCAR Command Language (NCL) 
 

A scripting language developed at NCAR and tailored 
for the analysis and visualization of geoscientific data 

http://www.ncl.ucar.edu/ 

1.  Simple, robust file input and output 
2.  Hundreds of analysis (computational) 

functions. Can call your own Fortran/C 
code from NCL. 

3.  Visualizations (2D) are publication quality 
and highly customizable 
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Topics 

•  Overview	
  of	
  NCL	
  
•  NCL	
  language	
  basics	
  
− How	
  to	
  run	
  NCL	
  
− Language	
  syntax	
  
− Variables	
  (scalars	
  and	
  arrays)	
  

•  Metadata	
  
•  NetCDF	
  files	
  
•  Website	
  tour	
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NCL basics 

•  You	
  can	
  run	
  NCL	
  interac7vely	
  or	
  in	
  batch	
  
mode	
  

•  We	
  highly	
  recommend	
  batch	
  mode!	
  
•  Interac7ve	
  is	
  useful	
  for	
  trying	
  things	
  out	
  
•  Batch	
  mode:	
  use	
  a	
  UNIX	
  editor	
  like	
  “emacs”,	
  
“vi”,	
  “nedit”,	
  “TextWrangler”,	
  “NetBeans”	
  

•  There	
  are	
  editor	
  enhancements	
  available	
  
h=p://www.ncl.ucar.edu/Applica7ons/editor.shtml	
  



Sample of 
enhanced 

“TextWrangler” 
editor screen 
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Running NCL interactively 

 
 

Open	
  a	
  UNIX	
  terminal	
  window	
  and	
  type:	
  
	
  
ncl <return>!

	
  
Several	
  lines	
  will	
  be	
  echoed.	
  You	
  will	
  get	
  a	
  prompt	
  where	
  you	
  can	
  
type	
  commands:	
  
 
Copyright (C) 1995-2013 - All Rights Reserved!
University Corporation for Atmospheric Research!
NCAR Command Language Version 6.1.2!
The use of this software is governed by a License Agreement.!
See http://www.ncl.ucar.edu/ for more details.!
ncl 0> print("hello")!
(0)     hello!
ncl 1> quit!
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Command line options 

 
 

To	
  get	
  the	
  version:	
  
	
  
% ncl –V  
6.1.2!

	
  
To	
  get	
  a	
  list	
  of	
  other	
  op7ons:	
  
 
% ncl –h  
Usage: ncl -fhnpxV <args> <file.ncl>!

! -f: Use New File Structure, and NetCDF4 features!
! -n: don't enumerate values in print()!
! -p: don't page output from the system() command!
! -x: echo NCL commands!
! -V: print NCL version and exit!
! -h: print this message and exit!

 
!
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Running NCL in batch mode 

 
 

•  Create	
  an	
  NCL	
  script	
  using	
  a	
  UNIX	
  editor	
  
•  Call	
  it	
  whatever	
  you	
  like.	
  We	
  recommend	
  	
  ending	
  it	
  

with	
  “.ncl”,	
  like	
  “plot_icon.ncl”	
  

•  Run	
  “ncl”	
  on	
  it	
  on	
  the	
  UNIX	
  command	
  line:	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ncl plot_icon.ncl	
  

•  Printed	
  output	
  will	
  appear	
  on	
  UNIX	
  standard	
  out	
  

•  Graphical	
  output	
  will	
  go	
  wherever	
  you	
  tell	
  it	
  (later)	
  
 
!
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NCL language basics 

 
 

•  Op7onally	
  start	
  and	
  end	
  script	
  with	
  “begin”	
  and	
  “end”	
  

•  Comments	
  start	
  with	
  “;”	
  –	
  they	
  can	
  be	
  on	
  line	
  by	
  themselves	
  
or	
  at	
  the	
  end	
  of	
  a	
  line.	
  

•  Code	
  can	
  start	
  anywhere	
  on	
  a	
  line	
  

•  Strings	
  are	
  always	
  enclosed	
  in	
  double	
  quotes	
  (“Hello	
  DKRZ”)	
  

•  A	
  rou7ne	
  that	
  returns	
  a	
  value	
  is	
  called	
  a	
  “func7on”	
  

•  A	
  rou7ne	
  that	
  doesn’t	
  return	
  a	
  value	
  is	
  called	
  a	
  “procedure”	
  

•  Con7nua7on	
  character	
  is	
  a	
  backwards	
  slash	
  (“\”)	
  



Introduction to NCL 

NCL_basics_1.ncl 

begin  
 
;---Open a netCDF file and print contents!
  f = addfile (“ECHAM5_OM_A1B_2001_0101-1001_2D.nc”,”r”)!
  !
;---Read “slp” off NetCDF file and print its info!
  slp = f->slp                   ; (time,lat,lon)!
  printVarSummary(slp)!
  print(min(slp))    ; function inside a procedure!
  print(max(slp))!
!
;---Calculate running average across time!
  slp_ts = runave (slp, 3, 0)!
  print(min(slp_ts))  
  print(max(slp_ts))  
!
end!



Variable: slp!
Type: float!
Total Size: 2949120 bytes!
            737280 values!
Number of Dimensions: 3!
Dimensions and sizes: ![time | 40] x [lat | 96] x [lon | 192]!
Coordinates: !
            time: [   0.. 234]!
            lat: [88.57216851400727..-88.57216851400727]!
            lon: [-180..178.125]!
Number Of Attributes: 5!
  long_name :!mean sea level pressure!
  units : !Pa!
  code : !151!
  table : !128!
  grid_type :!gaussian!
(0)     94403.69!
(0)     105950.7!
(0)     94422.02!
(0)     105835.5!

Output from “NCL_basics_1.ncl” script 
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x = (/1,2,3,-999,5/)!
print(x)!
printVarSummary(x) 

Variable: x!
Type: integer!
Total Size: 20 bytes!
            5 values!
Number of Dimensions: 1!
Dimensions and sizes:   [5]!
Coordinates: !
(0)     1!
(1)     2!
(2)     3!
(3)     -999!
(4)     5!

Variable: x!
Type: integer!
Total Size: 20 bytes!
            5 values!
Number of Dimensions: 1!
Dimensions and sizes:   [5]!

print! printVarSummary!

print versus printVarSummary 
Both procedures important for debugging! 

“Look at your data!” 
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;---Note: no begin or end  
!
;---Open a netCDF file and print contents                                                  !
  filename = “ECHAM5_OM_A1B_2001_0101-1001_2D.nc”!
  print(“Opening a NetCDF file called “ + filename)!
  f = addfile (filename, “r“)!
!
;---Read first time step and print info                                                    !
  slp = f->slp(0,:,:)      ; (lat x lon)                                                   !
  printVarSummary(slp)!
  print(“min/max slp = “ + min(slp) + “/“ + max(slp))!
!
;---Calculate average across all values                                                    !
  slp_avg = avg (slp)     ; returns a single value!
  printVarSummary(slp_avg)!
  print(“Average of slp = “ + slp_avg)!

NCL_basics_2.ncl 



Opening a NetCDF file called ECHAM5_OM_A1B_2001_0101-1001_2D.nc!
!
Variable: slp!
Type: float!
Total Size: 73728 bytes!
            18432 values!
Number of Dimensions: 2!
Dimensions and sizes: ![lat | 96] x [lon | 192]!
Coordinates: !
            lat: [88.57216851400727..-88.57216851400727]!
            lon: [-180..178.125]!
Number Of Attributes: 6!
  time : !   0!
  long_name : !mean sea level pressure!
  units : !Pa!
  code : !151!
  table : !128!
  grid_type : !gaussian!
min/max slp = 96715.2/105364!
!
Variable: slp_avg!
Type: float!
Total Size: 4 bytes!
            1 values!
Number of Dimensions: 1!
Dimensions and sizes: ![1]!
Coordinates: !
Average of slp = 100941!

Output from “NCL_basics_2.ncl” 
script which was executed with 

command line option “-n”: 
 

ncl –n NCL_basics_2.ncl!
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Scalar variables 
;---Explicit scalar assignment  
ndys = 30                    ; type integer  
x_f  = 2983.599918           ; type float  
long_name = “Water Vapor”    ; type string  
 

;---Use “literals” to force a type  
d = 3.14159265358979d        ; double  
dim = 32676l                 ; long  
short_val = 10h              ; short  
 
;---Logicals have no quotes  
done = True                  ; False!

;---Variables are case-sensitive  
Lat = 10.8   ; these are three  
LAT = 90.    ; different variables  
lat = -30!
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Mixing types: calculations and strings 

;---Mixing types, “largest” type used  
i = 7/10   ; integer (i=0)  
x = 7/10.  ; float   (x=0.7)!
 

y = (22./7)/2d  ; double (1.571428537368774)!
 

z = (i+5) * x   ; float (z=3.5)!

;---”atan” returns a float  
rad2deg = 45/atan(1)     ; 57.29578!

;---Use “+” for string concatenation  
str = “x = “ + 2            ; “x = 2”!

j = 2  
s = “var_” + (j+1) + “_f“   ; s = “var_3_f“!
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Coercing values to other types 
;  
; Use conversion functions “toxxx” to convert a  
; value to a “lower” type. Precision will be  
; compromised.  
;  

dx = 12345.678901234d     ; dx is double  
fx = tofloat(dx)          ; fx = 12345.68  
ix = toint(dx)            ; ix = 12345  
iy = totype(x,”integer”)  ; iy = 12345  
!

;---Strings are handled differently  
s = tostring(dx)          ; “12345.678901”  
s = tostring(iy)          ; s = “12345”  
s = “” + iy              ; s = “12345”!

;---Use “typeof” function to print type  
print(typeof(dx))      ; “double”!
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Changing variables to a “higher” type 
ff = 1.5e20   ; float  
ff = 1000     ; Assigning integer value to  
              ; float variable is okay!  
ff = 1d36     ; Assigning double value  
              ; to float not okay.  
              ; Error: “type mismatch”!
 

;---Use delete or reassignment (:=) operator  
delete(ff)  
ff = 1d36     ; double!

;---This will work too  
ff = 1.5e20  
ff := 1d36 
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NCL statements 

•  “if”	
  statement	
  
•  “do”	
  loops	
  
•  “load”	
  to	
  load	
  other	
  NCL	
  scripts	
  
•  “func7on”	
  to	
  define	
  your	
  own	
  func7on	
  
•  “procedure”	
  to	
  define	
  your	
  own	
  procedure	
  
•  “exit”	
  to	
  exit	
  NCL	
  script	
  at	
  that	
  point	
  
•  “quit”	
  if	
  you	
  are	
  running	
  interac7vely	
  

h=p://www.ncl.ucar.edu/Document/Manuals/Ref_Manual/NclStatements.shtml	
  



“if” and “do” statements 

j     = 0  
found = False  
do while (j.lt.nvalues .and. .not.found)  
  if(something) then  
    do something  
    found = True  
  end if  
  do something  
  increment j in some fashion  
end do!

do i=0,ndims-1    ; do i=ndims-1,0,1 for reverse  
  do something  
end do           ; space between “end” and “do”!

if(varname.eq.”slp”.and.units.eq.”Pa”) then  
  do something  
else                     ; No “else if”  
  do something else  
end if               ; There must be a space  
                     ; between “end” and “if”!
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Trick to get around lack of “elseif” 
if(x.lt.0) then!

  do something!

else if(x.gt.0) then!

  do something else!

else       ; x = 0!

  do something else!

end if ; Need one of these for every “if”  
end if!

!
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Array basics 

•  Row major like C/C++ (Fortran is column major) 
•  Leftmost dimension varies the slowest, 

rightmost varies fastest 
•  Use “(/” and “/)” to create arrays 

•  Dimensions are numbered left to right (0,1,…) 
•  Indexes (subscripts) start at 0 (0 to n-1) 

•  Use parentheses to access elements 

•  Can do calculations across whole arrays without 
looping 
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Array basics 
;---One-dimensional (1D) arrays, 3 elements  
lat = (/-80,0.,80/)     ; float  
LAT = (/-80,0,80/)      ; integer!

;---1D string array, 4 elements  
MM = (/”March”, ”April”, ”May”, ”June”/)!

;---Create 3x2 two-dimensional (2D) double array  
z = (/(/1,2d/),(/3,4/),(/9,8/)/)  
!
;---Assume “x” is a one-dimensional array!
dx = x(2) – x(1)  ; 3rd value minus 2nd value  

!
;---Assume Y is three-dimensional(nx,ny,nz)!
y1 = y(0,0,0)           ; y1 = first value of y!
yn = y(nx-1,ny-1,nz-1)  ; yn = last value of y!
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Array subscripting 

•  Three kinds of array subscripting 
1.  Index (uses ‘:’ and ‘::’) 

2.  Coordinate (uses curly braces ‘{‘ and ‘}’) 

3.  Named dimensions (uses ‘!’) 

•  You can mix subscripting types in one variable 

•  Be aware of dimension reduction 

•  Index subscripting is 0-based 
(Fortran by default is 1-based) 
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Array index subscripting, : and :: 
;---Assume T is a 3D array (ntime x nlat x nlon)  
  t = T!           ; Copy entire array to new variable  
  t = T(:,:,:)    ; Don’t need to do this!  
 
  t = (/T/)        ; Copy entire array, don’t copy metadata  
                   ; (_FillValue is retained)!

;---The following examples create a 2D array “t” from “T”  
  t = T(0,:,::5)     ; 1st time index, all lat, every 5th lon  
                     ; (nlat x nlon/5)  
 
  t = T(0,::-1,:50)  ; 1st time index, reverse lat,  
                     ; first 51 lons (nlat x 51)  
 
  t = T(:1,45,10:20) ; 1st two time indices, 46th index of lat,  
                     ; 11th-21st indices of lon (2 x 11)!

;---To prevent dimension reduction, use n:n  
  t = T(0:0,:,::5)           ; 1 x nlat x nlon/5  
  t = T(:1,45:45,10:20)      ; 2 x 1 x 21!
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Calculations on arrays 

•  Don’t	
  need	
  to	
  loop	
  to	
  do	
  array	
  calcula7ons	
  
•  Arrays	
  need	
  to	
  be	
  same	
  size,	
  but	
  scalars	
  can	
  
be	
  used	
  anywhere;	
  scalars	
  are	
  arrays	
  with	
  
one	
  dimension	
  and	
  one	
  element	
  

•  Use	
  “conform”	
  func7on	
  if	
  you	
  need	
  to	
  
conform	
  one	
  array	
  to	
  size	
  of	
  another	
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 !
 0   1   2!

 !

 0   1   2   3!
!

;---Assume “clat” and “clon” are lat/lon arrays in radians  
rad2deg = 45./atan(1.)   ; radians to degrees  
lat     = clat * rad2deg ; Convert to degrees  
lon     = clon * rad2deg  
lat@units = “degrees_north”   ; Good idea to do this!  
lon@units = “degrees_east”  
!

;---Can also do this  
lat = (/clat * rad2deg/)   ; Special: don’t copy metadata  
!

;---Be careful with ordering of syntax  
zlev = (-7*log(lev/10^3))      ; evaluated as  
                               ; (-7)*log(lev/(10^3))!;  
; Use “conform” to promote an array to the size of another.  
;  
; Assume “Twk” is (time,lat,lon,lev), and  
; “ptp” is (time,lat,lon)  
 

ptropWk = conform(Twk, ptp, (/0,1,2/)) ; time,lat,lon,lev  
!

Calculations on arrays 
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Array efficiency 
;---Inefficient  
do i=0,ny-1  
  do j=0,nx-1  
    x(i,j) = y(i,j) * 0.01  
  end do  
end do  
!
;---Efficient  
x = y*0.01!

;---Inefficient  
do i=0,nlon-1  
  if(lon(i).lt.0) then  
    lon(i) = lon(i) + 360.  
  end if  
end do!
;---Efficient"
lon = where(lon.lt.0,lon+360,lon)!
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;---Reshaping an array  
  t1D = ndtooned(T)               ; Convert to 1D array  
  t2D = onedtond(t1D, (/N,M/) )   ; Convert to N x M array!

;---Reordering an array, uses “named dimensions”  
; Let T(time,lat,lon)  
  t = T(lat|:,lon|:,time|:)   ; Can’t assign to same var!

;---Reversing dimensions of an array  
 

; Let T(lev,lat,lon)  
  T = T(::-1,:,:)     ; Will reverse coordinate array too,!

Array reorder, reshape, reverse 
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;---Very useful “where” function  
  q = where(z.gt.pi .and. z.lt.pi2, pi*z, 0.5*z)  
!

; “num”, “any”, “all” 
 

  npos = num (xTemp.gt.0.0)  
 

  if (.not.any(string_array.eq.”hello world”)) then  
    do something  
  end if!
 

  if (all(xTemp.lt.0)) then  
    do something  
  end if!

; “ind” function, only on 1D arrays  
  ii = ind(pr.lt.500. .and. pr.gt.60.)  
!

Special functions for arrays 



Introduction to NCL 

Useful array functions 
•  “dimsizes” – get dimension sizes 
•  “any” or “all” – check array values 
•  “where” – perform operation on array based on conditional 

statements 
•  “conform” – make a smaller array conform to size of larger array 
•  “mask” – mask an array based on another array 
•  “ind” – get the indexes of a one-dimensional array where an 

array condition is True 
•  “reshape” – reshape an array to another dimension size 
•  “ndtooned” and “onedtond” – convert arrays from one-

dimensional to multi-dimensional, and vice versa 

http://www.ncl.ucar.edu/Document/Functions/array_manip.shtml 
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DEMO 

•  Crea7ng	
  scalar	
  and	
  array	
  variables	
  
•  Calling	
  NCL	
  func7ons	
  
• Using	
  “print”	
  and	
  “printVarSummary”	
  

	
  
h,p://www.ncl.ucar.edu/Training/Workshops/interac:ve.shtml	
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Metadata 
•  Metadata is information about a variable. 

•  Metadata can consist of: 
− Attributes (can describe files and variables) 

− Named dimensions (describes a variable’s dimensions) 

− Coordinate arrays (coordinates for data values) 

•  “_FillValue” attribute is special: indicates a variable’s 
missing value 

•  When you do an “ncdump -h” or “ncl_filedump” on a “self-
describing” data file, you see all the metadata 

•  NCL will use metadata in many cases, 	
  



Introduction to NCL 

Why is metadata important? 

•  Can give important information about a variable: units, 

description, location (lat/lon), date, how it was calculated, 

etc. 

•  Languages like NCL, GrADS, Ncview, CDO, NCO, 

depend on metadata to correctly interpret data for 

calculations and graphics 

•  When you share data files with someone else, metadata 

is like a document for your data. 
NetCDF Climate and Forecast (CF) Metadata Conventions 

http://cf-pcmdi.llnl.gov 



Metadata assignment (attributes) 
; Use the “@” symbol to assign attribute metadata.  
; Useful for assigning units, long names, missing vals  

; Assume “T” is 3 x 4 x 5 float array of temperature  
; values in degrees celsius.  
 

  T@_FillValue  = -999          ; Missing value  
  T@units       = “deg C”  
  T@long_name   = “temperature”  
  T@wgts        = (/ 0.25, 0.5, 0.25 /)  
  printVarSummary(T)   ; To see contents of T!

Variable: T!
Type: float!
Total Size: 240 bytes!
            60 values!
Number of Dimensions: 3!
Dimensions and sizes:   [3] x [4] x [5]!
Coordinates: !
Number Of Attributes: 5!
  wgts :        ( 0.25, 0.5, 0.25 )!
  long_name :   temperature!
  units :       deg C!
  _FillValue :  -999 

printVarSummary(T) results 



Metadata assignment (named dimensions) 
; Named dimensions are useful for arrays.  
; Use the “!” symbol to name dimensions.  
; Assume “T” is same 3D array as before  
  T!0 = “time” ; Leftmost dimension  
  T!1 = “lat”  ; Middle dimension  
  T!2 = “lon”  ; Rightmost dimension!

  printVarSummary(T)  ; To see metadata of T!

Variable: T!
Type: float!
Total Size: 240 bytes!
            60 values!
Number of Dimensions: 3!
Dimensions and sizes:   [time | 3] x [lat | 4] x [lon | 5]!
Coordinates: !
Number Of Attributes: 5!
  wgts :        ( 0.25, 0.5, 0.25 )!
  long_name :   temperature!
  units :       deg C!
  _FillValue :  -999!
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Missing values (“_FillValue” attribute) 
•  “_FillValue” is a NetCDF and NCL reserved attribute 
•  Must be same as type of variable 

•  “missing_value” attribute has no special status to 
NCL. 
If “T” has “missing_value” attribute and no 
“_FillValue”: 

   T@_FillValue = T@missing_value!

•  Best not to use zero as a _FillValue!

•  Default missing values for all NCL variable types: 

http://www.ncl.ucar.edu/Document/Manuals/Ref_Manual/NclVariables.shtml 
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Missing values in an NCL script 
•  Most NCL functions ignore _FillValue: 

 

x            = (/1,2,3,-999,5/) ; no msg val yet  
xavg         = avg(x)           ; = -197.6  
x@_FillValue = -999             ; now has a msg val  
xavg         = avg(x)           ;(1+2+3+5)/4 = 2.7!

•  Use “default_fillvalue” to set a missing value for a 
variable that doesn’t have one: 
 
x@_FillValue = default_fillvalue(typeof(x))!
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Missing value functions 
•  Use any, all, and ismissing functions to query a 

variable for missing values: 
 

  if (.not.any(ismissing(T))) then  
    do something  
  end if  
  if (all(ismissing(T))) then  
    do something  
  end if!

•  Use num & ismissing to count missing values: 
  nmsg = num(ismissing(T))!
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Metadata assignment (coordinate arrays) 
; Coordinate arrays are 1D arrays representing values  
; for dimensions of an array. Use the “&” symbol to assign  
; coordinate values; must name dimensions first.  

  T!0    = “time”  
  T!1    = “lat”  
  T!2    = “lon”  

  T&time = (/0,5,10/)           ; Coordinate arrays must  
  T&lat  = fspan(-90,90,4)      ; be 1D and same length  
  T&lon  = fspan(-180,180,5)    s; as dimension they represent  
  T&lat@units = “degrees_north”  
  T&lon@units = “degrees_east”!

Variable: T!
Type: float!
Total Size: 240 bytes!
            60 values!
Number of Dimensions: 3!
Dimensions and sizes:   [time | 3] x [lat | 4] x [lon | 5]!
Coordinates: !
            time: [0..10]!
            lat: [-90..90]!
            lon: [-180..180]!

Important for graphics 
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DEMO 

Looking	
  at	
  variables	
  with	
  metadata	
  
h,p://www.ncl.ucar.edu/Training/Workshops/interac:ve.shtml	
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Array Subscripting 
•  Three kinds of array subscripting 

1.  Index (uses ‘:’ and ‘::’) (already covered) 
2.  Coordinate (uses curly braces ‘{‘ and ‘}’) 
3.  Named dimensions (uses ‘!’) 

•  You can mix subscripting types in one 
variable 

•  Be aware of dimension reduction 
•  Index subscripting is 0-based 

(Fortran by default is 1-based) 

http://www.ncl.ucar.edu/Document/Manuals/Ref_Manual/NclVariables.shtml#Subscripts 
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Array coordinate subscripting, {…} 

; Consider T(ntime x nlat x nlon)  
 
  t = T(:,{-30:30},:)      ; all time and lon, lat 30oS to 30oN  
 
  t = T(0,{-20},{-180:35:3})  ; 1st time, lat nearest 20oS,  
                              ; every 3rd lon from 180oW to 35oE  
                              ; “t” will be one-dimensional  
!

; Can mix index and coordinate subscripting  
 
  t = T(:,{-30:30},1::2) ; all time, lat 30oS to 30oN,  
                         ; every other lon starting with 2nd  
!
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;  comment (on line by itself, or at end of line) 
@  reference/create attributes 
!  reference/create named dimensions 
&  reference/create coordinate variables 
{…}  coordinate subscripting 
$...$  enclose strings when (im/ex)port variables via addfile 
(/.../)  array construct characters 
: or ::  array syntax 
|  separator for named dimensions 
\  continuation character 
::  syntax for external shared objects (fortran/C) 
->  use to (im/ex)port variables via addfile function 

NCL syntax characters 
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Looking at NetCDF files 

•  Many	
  ways	
  to	
  look	
  at	
  NetCDF	
  files	
  

1.  On	
  the	
  UNIX	
  command	
  line	
  using	
  “ncdump”	
  

2.  On	
  the	
  UNIX	
  command	
  line	
  using	
  “ncl_fileump”	
  

3.  With	
  an	
  NCL	
  script	
  using	
  “addfile”	
  func7on	
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DEMO 
Looking	
  at	
  files	
  with	
  ncdump	
  (NetCDF	
  tool)	
  and	
  

ncl_filedump	
  (NCL	
  tool)	
  
	
  

Rec7linear	
  grids	
  –	
  grids	
  whose	
  la7tude	
  and	
  longitude	
  arrays	
  are	
  
“coordinate	
  arrays”	
  (one-­‐dimensional	
  arrays,	
  and	
  rightmost	
  two	
  

dimensions	
  are	
  nlat	
  x	
  nlon)	
  

Curvilinear	
  grids	
  –	
  grids	
  whose	
  la7tude	
  and	
  longitude	
  arrays	
  are	
  
two-­‐dimensional	
  arrays,	
  and	
  rightmost	
  two	
  dimensions	
  are	
  nlat	
  x	
  

nlon)	
  

Unstructured	
  grids	
  –	
  one-­‐dimensional	
  arrays	
  whose	
  la7tude	
  and	
  
longitude	
  arrays	
  are	
  also	
  one-­‐dimensional	
  and	
  all	
  the	
  same	
  length	
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Writing NCL script to open NetCDF file 

•  “addfile”	
  –	
  open	
  NetCDF,	
  HDF4,	
  HDF5,	
  
GRIB1,	
  GRIB2,	
  HDF-­‐EOS2,	
  HDF-­‐EOS5,	
  
Shapefile	
  

•  “addfile”	
  can	
  also	
  be	
  used	
  to	
  write	
  NetCDF	
  or	
  
HDF4	
  

•  Variables	
  read	
  off	
  these	
  files	
  contain	
  
everything,	
  including	
  metadata	
  

•  Use	
  “-­‐>”	
  syntax	
  to	
  read	
  a	
  variable	
  off	
  the	
  file	
  
•  “addfiles”	
  –	
  read	
  mul7ple	
  files	
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DEMO 

Reading	
  and	
  wri7ng	
  NetCDF	
  
files	
  using	
  “addfile”	
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Important URLS 
•  DKRZ	
  NCL	
  Tutorial	
  Document	
  

h=p://mms.dkrz.de/pdf/vis/NCL_Tutorial_V1.1.pdf	
  

•  NCL	
  Reference	
  Manual	
  
h=p://www.ncl.ucar.edu/Document/Manuals/Ref_Manual/	
  

•  Mini	
  Reference	
  Manual	
  
h=p://www.ncl.ucar.edu/Document/Manuals/language_man.pdf	
  

•  Frequently	
  Asked	
  Ques7ons	
  
h=p://www.ncl.ucar.edu/FAQ/	
  

•  Metadata	
  conven7ons	
  
h=p://www.unidata.ucar.edu/so_ware/netcdf/examples/files.html	
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