NCL Visualization Workshop

Part 1: Introduction to NCL

NCAR Command Language

November 28-29, 2013
Deutsches Klimarechenzentrum

Karin Meier-Fleischer, DKRZ and Mary Haley, NCAR

<e=> DKRZ @

DEUTSCHES
KLIMARECHENZENTRUM

Max-Planck-Institut CISL
fur Meteorologie h NCAR - ,,\

NATIONAL CENTER FOR ATMOSPHERIC RESEARCH

NCAR is sponsored by the National Science Foundation

NCL team

- ™y

Dennis Shea o Dave Brown Mary Haley

Rick Brownrigg |

Science guy NCL Tech Lead Project lead Developer
Data expert Everything Trainer Research
Trainer
Wei Huang Adam Phillips
Developer Science guy

Graphical expert

Data Formats

NCL team

Develop geoscientific analysis and visualization
software in close collaboration with climate and
weather scientists

Create extensive examples and documentation
Answer user questions on a daily (hourly!) basis
Provide hands-on training workshops 4-6x a year

Collaborate with outside groups and users to
enhance software

Dennis Shea Dave Brown Mary Haley Rick Brownrigg
Science guy NCL Tech Lead Project lead Developer
Data expert Everything Trainer Research
Trainer
Wei Huang Adam Phillips
Developer Science guy
Data Formats Graphical expert

14 NCL Workshops in last 2 years

[
4 k.= | A TE
o 50 J ey T 2 . p

Jackson State, Mississippi

LR RITT

Yale School of Forestry and NCAR, Boulder University of Alaska @ Fairbanks
Environmental Studies

68 workshops since Feb 2000, 1041 students

4 NCL Workshops at MPI

L |

i
1r

l
u

International
Workshops

- reau of Meteorology

N
APCC

APEC CLIMATE CENTER
ETH:.
l.:.f}}

S @

METEO
FRANCE \’ Mercator

Toujours un temps d’avance | Ocean
J Ocean Forecasters

CERFACS Toulouse 2012 UFRN Natal 2013

Important note

* | am hard-of-hearing in both ears and read lips.

* Questions welcome! Raise hand and get my

attention first. You may need to gesture wildly.

* |f | don’t understand, speak up slightly and more

slowly. You shouldn’t have to yell. ©

Introduction to NCL |' (NCL

Thanks

* Karin Meier-Fleischer, DKRZ

—NCL Tutorial is well-written, lots of

examples!

* Michael Bottinger, DKRZ
* Niklas Rober, DKRZ
* Antje Weitz, Bjorn Stevens, MPI

* Wiebke Boehm, MPI | NCL

DEUTSCHES
KLIMARECHENZENTRUM

WCL <= DKRZ NCL

TUTORIAL

High Quality Graphics
with
NCL 6.1.2

Karin Meier-Fleischer
Michael Béttinger
DKRZ

Version: 1.0 2013/10/22

Purpose of this workshop

Introduce you to NCL and its language features
Show you how to examine and read NetCDF files

Show you how to create high-quality visualizations
with NCL

Lab exercises: focused on reading NetCDF files and
creating two-dimensional visualizations and

animations

Introduction to NCL |' (NCL

Purpose of this lecture

Geared towards new users of NCL, but all users are welcome.
Assumption that you have some knowledge of programming.

Give you a quick overview of NCL

Introduce you to NCL language basics

Discuss importance of metadata

Demonstrate looking at NetCDF files
Demonstrate reading variables from NetCDF files

Do a website tour (if there’s time)

Introduction to NCL |' (NCL

Topics

Overview of NCL

NCL language basics
—How to run NCL

—Language syntax

—Variables (scalars and arrays)

Metadata
NetCDF files
Website tour

Introduction to NCL

f

SN
£7 <= 3
a)

'\ f‘\(’& 1
| e r

<

Topics

e Qverview of NCL

Introduction to NCL

First . . . an informal survey

 What software do you use?
— Fortran, C/C++

— Scripting languages and tools: Matlab, IDL, Python, R,
Ruby, Java, NCL, Climate data operators (CDO), NetCDF
operators (NCO), GrADS, Ncview, Avizo, ParaView

 What types of data do you work with?
NetCDF, HDF, HDF-EQS, GRIB, Shapefiles

* Tell us about yourself: name, where you work,

what kind of data or models do you work with,
what software do you currently use?

Introduction to NCL |' (NCL

NCAR Command Language (NCL)

A scripting language developed at NCAR and tailored
for the analysis and visualization of geoscientific data

Original Grid 2014.26m Potential Temp. (°C)

1. Simple, robust file input and output

2. Hundreds of analysis (computational)
functions. Can call your own Fortran/C
code from NCL.

3. Visualizations (2D) are publication quality
and highly customizable

Regridded 2014.26m Potential Temp. (°C) 36

. Users range from grad students doing
individual research to programmers in
scientific organizations working on large
scale projects

-0.8

. UNIX binaries & source available, free

. Extensive website, training workshops

http://www.ncl.ucar.edu/

Topics

* NCL language basics
—How to run NCL
—Language syntax

—Variables (scalars and arrays)

Introduction to NCL

NCL basics

You can run NCL interactively or in batch
mode

We highly recommend batch mode!
Interactive is useful for trying things out

Batch mode: use a UNIX editor like “emacs”,
“vi’, “nedit”, “TextWrangler”, “NetBeans”

There are editor enhancements available
http://www.ncl.ucar.edu/Applications/editor.shtml

Introduction to NCL |' | (NCL

Load "$NCARG_ROOT/11ib/ncarg/nclex/gsun/gsn_code.ncl”

: Load the NCL file that

contains the gsn_* functions used below.
begin
X = new(9,float) . Define two 1D arrays of 9 elements each.
y = new(9,float)
x = (/10.,20.,30.,40.,50.,60.,70.,80.,90./)
y = (/0.,0.71,1.,0.7,0.002,-0.71,-1.,-0.71, -0.003/)

= gsn_open_wks("x11","gsunOln") . Open an X11 workstation,

Sample of

plot = gsn_xy(wks,x,y,False) Draw an XY plot with 1 curve
----------- Begin second plot -------mmmmmmm
== (/(/0-; 0-7; 1-; 0-7; 0-; '0-7: '1-: '0-7: 0-/);\
(2., 2.7, 3., 2.7, 2., 1.3, 1., 1.3, 2./).\
/4., 4.7. 5., 4.7. 4.. 3.3. 3.. 3.3. .5/}

Define attributes of
: and y2.

x@long_name X

y2@long_name =

enhanced
“TextWrangler
editor screen

plot = gsn_xy(wks,x,y2,False) Draw an XY plot with 3 curves
---------- Begin third plot ---------mmmmmmii o
resources = True Indicate you want to
set some resources.
resources@xyLineColors = (/2,3,4/) Define line colors.
resources@xyLineThicknesses = (/1.,2.,5./) ; Define line thicknesses
(1.0 1s the default)
plot = gsn_xy(wks,x,y2, resources) Draw an XY plot
---------- Begin fourth plot ---------mmmmmm
resources@tiMainString = "X-Y plot" Title for the XY plot
resources@tiXAxisString = "X Axis" L#Dpl for the X axis
resources@tiYAxisString = "Y Axis" Label for the Y axis
resources@tiMainFont = "Helvetica" ; Font for title
resourcesatiXAxisFont = "Helvetica" ; Font for X axis label

3

Running NCL interactively

Open a UNIX terminal window and type:

ncl <return>

Several lines will be echoed. You will get a prompt where you can
type commands:

Copyright (C) 1995-2013 - All Rights Reserved
University Corporation for Atmospheric Research
NCAR Command Language Version 6.1.2

The use of this software is governed by a License Agreement.
See http://www.ncl.ucar.edu/ for more details.
ncl 0> print("hello")

(0) hello

ncl 1> quit

Introduction to NCL |' | (NCL

Command line options

To get the version:

ncl —V
1.2

O\ o©

To get a list of other options:

s ncl —h

Usage: ncl -fhnpxV <args> <file.ncl>
—-f: Use New File Structure, and NetCDF4 features
-n: don't enumerate values in print()
-p: don't page output from the system() command
—-X: echo NCL commands
-V: print NCL version and exit

-h: print this message and exit

Introduction to NCL |' | (NCL

Running NCL in batch mode

Create an NCL script using a UNIX editor

Call it whatever you like. We recommend ending it
with “.ncl”, like “plot_icon.ncl”

|II

Run “ncl” on it on the UNIX command line:

ncl plot icon.ncl

Printed output will appear on UNIX standard out

Graphical output will go wherever you tell it (later)

Introduction to NCL |' {NCL

NCL language basics

Optionally start and end script with “begin” and “end”

Comments start with “;” —they can be on line by themselves

or at the end of a line.

Code can start anywhere on a line

Strings are always enclosed in double quotes (“Hello DKRZ”)
A routine that returns a value is called a “function”

A routine that doesn’t return a value is called a “procedure”

Continuation character is a backwards slash (“\”)

£
p

Introduction to NCL |' (NCL

NCL basics 1.ncl

begin

;——-0Open a netCDF file and print contents
f = addfile (“ECHAM5 OM AlB 2001 0101-1001 2D.nc”,”r")

;———Read “slp” off NetCDF file and print its info

slp = f->slp ; (time,lat,lon)
printVarSummary(slp)
print(min(slp)) ; function inside a procedure

print(max(slp))

;j———-Calculate running average across time
slp ts = runave (slp, 3, 0)

print (min(slp ts))

print (max(slp ts))

Vs RN
|

Introduction to NCL |' MCL

Variable: slp Output from “NCL_basics 1.ncl” script

Type: float
Total Size: 2949120 bytes
737280 wvalues
Number of Dimensions: 3
Dimensions and sizes: [time | 40] x [lat | 96] x [lon | 192]
Coordinates:
time: | 0.. 234]
lat: [88.57216851400727..-88.57216851400727]
lon: [-180..178.125]
Number Of Attributes: 5
long name :mean sea level pressure

units : Pa
code : 151
table : 128
grid type :gaussian
(0) 94403.69
(0) 105950.7
(0) 94422.02

(0) 105835.5

print versus printVarSummary

Both procedures important for debugging!

x = (/1,2,3,-999,5/)
print(x)
printVarSummary (x)

“Look at your data!”

print printVarSummary
Variable: x Variable: x
Type: integer Type: integer
Total Size: 20 bytes Total Size: 20 bytes

5 values 5 values

Number of Dimensions: 1 Number of Dimensions: 1
Dimensions and sizes: [5] Dimensions and sizes: [5]
Coordinates:
(0) 1
(1) 2
(2) 3
(3) -999
(4) 5 SR

[/“ b l.\::
Introduction to NCL NCL

NCL basics 2.ncl

;——-Note: no begin or end

;——-0Open a netCDF file and print contents
filename = “ECHAM5 OM AlB 2001 0101-1001 2D.nc”
print (“Opening a NetCDF file called “ + filename)
f = addfile (filename, “r*)

;j———Read first time step and print info
slp = £->slp(0,:,:) ; (lat x lon)
printVarSummary(slp)
print(“min/max slp = “ + min(slp) + “/“ + max(slp))

;———Calculate average across all values
slp avg = avg (slp) ; returns a single value
printVarSummary(slp avg)
print (“Average of slp = “ + slp avg)

AN,

Introduction to NCL |' | \,N CL

Opening a NetCDF file called ECHAM5 OM AlB 2001 0101-1001_ 2D.nc

Variable: slp
Type: float
Total Size: 73728 bytes
18432 values
Number of Dimensions: 2
Dimensions and sizes: [lat | 96] x [lon | 192]
Coordinates:
lat: [88.57216851400727..-88.57216851400727]
lon: [-180..178.125]
Number Of Attributes: 6

time : 0

long name : mean sea level pressure
units : Pa

code : 151

table : 128

grid type : gaussian

Output from “NCL_basics_2.ncl”
script which was executed with

Variable: slp avg command line option “-n”:
Type: float
Total Size: 4 bytes

min/max slp = 96715.2/105364

ncl —n NCL basics 2.ncl

1 values
Number of Dimensions: 1
Dimensions and sizes: [1]

Coordinates:
Average of slp = 100941

Scalar variables

;———-ExXplicit scalar assignment

ndys = 30 ; type integer
x £ = 2983.599918 ; type float
long name = “Water Vapor” ; type string
;——-Use “literals” to force a type

d = 3.14159265358979d ; double

dim = 326761 ; long

short val = 10h ; short
;——-Logicals have no quotes

done = True + False
s——-Variables are case-sensitive

Lat = 10.8 » these are three

LAT = 90. + different variables

lat = -30

Introduction to NCL |'

A7 8
g)

e i
| .

Mixing types: calculations and strings

;——-Mixing types, *“largest” type used
i=17/10 ; integer (i=0)
x = 7/10. ; float (x=0.7)

y = (22./7)/2d ; double (1.571428537368774)

z = (1+5) * X ; float (z=3.5)

r——=-"atan” returns a float

rad2deg = 45/atan(1l) ; 57.29578

;——-Use “+"” for string concatenation

str = “x = “ 4+ 2 ;”X=2"

J = 2

s = “var " + (j+1) + “ £~ ; s = “var 3 f“=

Introduction to NCL |' | \(NCL

Coercing values to other types

+ Use conversion functions “toxxx” to convert a
; value to a “lower” type. Precision will be
; compromised.

dx = 12345.678901234d ; dx is double
fx = tofloat(dx) ; £fx = 12345.68
i1xX = toint(dx) ; 1x = 12345
iy = totype(x,”integer”) ; iy = 12345

;———-Strings are handled differently

s = tostring(dx) ; “12345.678901"
s = tostring(iy) ; S = "12345"
s = “" + iy ; S = “12345"

;——-Use “typeof” function to print type
print (typeof (dx)) ; “double” e

Introduction to NCL I‘ | \N CL

Changing variables to a “higher” type

ff = 1.5e20 float

f£f = 1000 ; Assigning integer value to
; float variable is okay!
ff = 1d36 ; Assigning double value
; to float not okay.
; Error: “type mismatch”
;——-Use delete or reassignment (:=) operator
delete(ff)
f£f = 1d36 ;s double
s———This will work too
ff = 1.5e20
ff := 1d36

Introduction to NCL |' {NCL

NCL statements

* “if” statement

* “do” loops

* “load” to load other NCL scripts

* “function” to define your own function

* “procedure” to define your own procedure
¢ “exit” to exit NCL script at that point

* “quit” if you are running interactively

http://www.ncl.ucar.edu/Document/Manuals/Ref Manual/NclStatements.shtml

Introduction to NCL |' | (NCL

“If” and “do” statements

if(varname.eq.”slp”.and.units.eq.”Pa”) then
do something

else + No “else if"”
do something else
end if ; There must be a space

+ between “end” and “if”

do i=0,ndims-1 + do i=ndims-1,0,1 for reverse
do something

end do ; space between “end” and “do”

J =0

found = False
do while (j.lt.nvalues .and. .not.found)
if (something) then
do something
found = True
end 1if
do something
increment j in some fashion
end do

Trick to get around lack of “elseif”

1if(x.1t.0) then
do something

else if(x.gt.0) then
do something else

else s+ Xx =0
do something else

end 1f ; Need one of these for every “if”
end 1f

Introduction to NCL |' MCL

Array basics

Row major like C/C++ (Fortran is column major)

Leftmost dimension varies the slowest,
rightmost varies fastest

Use “(/" and “/)" to create arrays

Dimensions are numbered left to right (0,1,...)
Indexes (subscripts) start at 0 (O to n-1)

Use parentheses to access elements

Can do calculations across whole arrays without
looping

Introduction to NCL |' (NCL

Array basics

;——-One-dimensional (1D) arrays, 3 elements
lat = (/-80,0.,80/) + float

LAT = (/-80,0,80/) ; integer

;———-1D string array, 4 elements

MM = (/"March”, "April”, "May”, "June”/)

—-—-—-Create 3x2 two-dimensional (2D) double array

z = (/(/1,24/),(/3,4/),(/9,8/)/)

;——-Assume “X” 1s a one-dimensional array

dx = x(2) — x(1) ; 3*@ value minus 2®*¢ value
j———Assume Y 1is three-dimensional (nx,ny,nz)

vyl = vy(0,0,0) ; vyl = first value of y
yn = y(nx-1,ny-1,nz-1) ; yn = last value of y..

Introduction to NCL |' | \ «NCL

Array subscripting

* Three kinds of array subscripting

1. Index (uses ‘:’ and “::’)

2. Coordinate (uses curly braces ‘{“and ‘}’)

3. Named dimensions (uses !")

* You can mix subscripting types in one variable

e Be aware of dimension reduction

* |Index subscripting is 0-based
(Fortran by default is 1-based)

Introduction to NCL |' (NCL

Array index subscripting, : and ::

j——-Assume T is a 3D array (ntime x nlat x nlon)
t =T ; Copy entire array to new variable
t = T(:,:,:) s Don't need to do this!
t = (/T/) Copy entire array, don' t copy metadata

e e

(_FillValue is retained)

;——-The following examples create a 2D array *“t” from “T”
t = T(0,:,::5) 15t time index, all lat, every 5t lon
(nlat x nlon/5)

e e

t =T(0,::-1,:50) 1st time index, reverse lat,

first 51 lons (nlat x 51)

e e

t = T(:1,45,10:20) ; 1St two time indices, 46 index of lat,
; 11th-21st indices of lon (2 x 11)
;——-To prevent dimension reduction, use n:n
t = T(0:0,:,::5) ; 1 x nlat x nlon/5
t = T(:1,45:45,10:20) ; 2 X1 x 21

o %Y
A
L
il

Introduction to NCL I‘ | \N CL

Calculations on arrays

* Don’t need to loop to do array calculations

« Arrays need to be same size, but scalars can

be used anywhere; scalars are arrays with

one dimension and one element

« Use “conform” function if you need to

conform one array to size of another

Introduction to NCL |' (NCL

Calculations on arrays

;———-Assume “clat” and “clon” are lat/lon arrays in radians
rad2deg = 45./atan(1l.) ; radians to degrees

lat = clat * rad2deg ; Convert to degrees

lon = clon * rad2deg

lat@units = “degrees north” ; Good idea to do this!
lon@units = “degrees east”

s———Can also do this

lat = (/clat * rad2deg/) ; Special: don’t copy metadata

;——-Be careful with ordering of syntax
zlev = (-7*log(lev/10"3)) ; evaluated as
;7 (-7)*log(lev/(107°3))

Use “‘conform” to promote an array to the size of another.
0 1 2 3

Assume ‘Twk is (time,lat,lon,lev), and

“ptp” is (time,lat,lon)

0 1 2
ptropWk = conform(Twk, ptp, (/0,1,2/)) ; time,lat,lon,lexﬁ\

Introduction to NCL |' | (NCL

e e o e e

Array efficiency

s———Inefficient
do i=0,ny-1
do j=0,nx-1
x(1i,3) = y(i,3) * 0.01
end do

end do
s———Efficient

x = y*0.01
s——=Inefficient

do i=0,nlon-1
if(lon(i).1t.0) then
lon(i) = lon(i) + 360.
end if
end do
s;———Efficient
lon = where(lon.l1lt.0,lon+360,1lon)

Introduction to NCL

VT Sk
g)
e i
| = 7
K *‘NCL

Array reorder, reshape, reverse

;———-Reshaping an array
t1D = ndtooned(T) ; Convert to 1D array
t2D = onedtond(tlD, (/N,M/)) ; Convert to N X M array

;———-Reordering an array, uses “named dimensions”
; Let T(time,lat,lon)
t = T(lat|:,lon]|:,time]:) ; Can’t assign to same var
;———Reversing dimensions of an array
; Let T(lev,lat,lon)
T = T(::-1,:,:) ; Will reverse coordinate array too,

SN
7 T
a2
| S &

=

Introduction to NCL |'

Special functions for arrays

s ———Very useful “where” function

4

q = where(z.gt.pi .and. z.lt.pi2, pi*z, 0.5%z)

“num” , “anY” , “a]_ l ”
npos = num (XTemp.gt.0.0)

if (.not.any(string array.eq. hello world”)) then
do something

end if

if (all(xTemp.lt.0)) then
do something
end if

“ind” function, only on 1D arrays
ii = ind(pr.lt.500. .and. pr.gt.60.)

ey

Introduction to NCL |' | \{NCL

Useful array functions

“dimsizes” — get dimension sizes
« “any” or “all”’ — check array values

« “where” — perform operation on array based on conditional
statements

« “conform” — make a smaller array conform to size of larger array
* “mask” — mask an array based on another array

* “ind” — get the indexes of a one-dimensional array where an
array condition is True

* “reshape” — reshape an array to another dimension size

« “ndtooned” and “onedtond” — convert arrays from one-
dimensional to multi-dimensional, and vice versa

http://www.ncl.ucar.edu/Document/Functions/array_manip.shtmi

Introduction to NCL |' MCL

DEMO

* Creating scalar and array variables
* Calling NCL functions
* Using “print” and “printVarSummary”

http://www.ncl.ucar.edu/Training/Workshops/interactive.shtml

s N
‘wﬁf"
Introduction to NCL |' \NCL

Topics

e Metadata

Introduction to NCL

Metadata

Metadata is information about a variable.

Metadata can consist of:
— Attributes (can describe files and variables)
— Named dimensions (describes a variable’s dimensions)

— Coordinate arrays (coordinates for data values)

11

_Fillvalue” attribute is special: indicates a variable’ s
missing value

When you do an “ncdump -h” or “ncl_filedump” on a “self-
describing” data file, you see all the metadata

NCL will use metadata in many cases,

Introduction to NCL |' MCL

Why is metadata important?

« Can give important information about a variable: units,
description, location (lat/lon), date, how it was calculated,

etc.

« Languages like NCL, GrADS, Ncview, CDO, NCO,
depend on metadata to correctly interpret data for

calculations and graphics

« When you share data files with someone else, metadata

IS like a document for your data.

NetCDF Climate and Forecast (CF) Metadata Conventions
http://cf-pcmdi.linl.gov

Introduction to NCL |' (NCL

Metadata assignment (attributes)

Use the “@” symbol to assign attribute metadata.
Useful for assigning units, long names, missing vals
Assume ‘T is 3 x 4 x 5 float array of temperature
values in degrees celsius.

e e e e

Te Fillvalue = -999 ; Missing value
T@units = “deg C”

T@long name = “temperature”

T@wgts = (/ 0.25, 0.5, 0.25 /)
printVarSummary (T) ; To see contents of T

Variable: T

Type: float

Total Size: 240 bytes
60 wvalues

Number of Dimensions: 3

printVarSummary(T) results

Dimensions and sizes: [3] x [4] x [5]
Coordinates:
Number Of Attributes: 5
wgts : (0.25, 0.5, 0.25)
long name : temperature
units : deg C

_Fillvalue : -999

Metadata assignment (named dimensions)

Named dimensions are useful for arrays.
Use the “!” symbol to name dimensions.
Assume ‘T is same 3D array as before

e e e

T!0 = “time” ; Leftmost dimension
T!1 = “lat” ; Middle dimension
T!2 = “lon” ; Rightmost dimension

printVarSummary(T) ; To see metadata of T

Variable: T

Type: float

Total Size: 240 bytes
60 values

Number of Dimensions: 3

Dimensions and sizes: I [time | 3] x [lat | 4] x [lon | 5]|
Coordinates:
Number Of Attributes: 5

wgts (0.25, 0.5, 0.25)

long name : temperature

units : deg C

_Fillvalue : =999

Missing values (*_FillValue™ attribute)
“ FillValue” is a NetCDF and NCL reserved attribute

Must be same as type of variable

“missing_value” attribute has no special status to
NCL.

If “T" has “missing_value” attribute and no
“ FillValue™

TQ@ FillValue = T@missing value
Best not to use zero as a _FillValue

Default missing values for all NCL variable types:

http.//www.ncl.ucar.edu/Document/Manuals/Ref Manual/NclVariables.shtml

Introduction to NCL I‘ | :N CL

Missing values in an NCL script

* Most NCL functions ignore _FillValue:

X = (/1,2,3,-999,5/) ; no msg val yet
xXavg = avg(x) ; = =-197.6

x@ FillValue = -999 ; now has a msg val
xXavg = avg(x) ; (1+2+3+5)/4 = 2.7

« Use “default_fillvalue™ to set a missing value for a
variable that doesn’t have one:

x@ Fillvalue default fillvalue(typeof (x))

Introduction to NCL |' MCL

Missing value functions

« Use any, all, and ismissing functions to query a
variable for missing values:

if (.not.any(ismissing(T))) then
do something

end 1f

1f (all(ismissing(T))) then
do something

end if

* Use num & ismissing to count missing values:

nmsg = num(ismissing(T))

Introduction to NCL |'

<NCL

Metadata assignment (coordinate arrays)

; Coordinate arrays are 1D arrays representing values

.
14

.
4

for dimensions of an array. Use the “&”

symbol to assign

coordinate values; must name dimensions first.

T!0 = “time”
T!1 = “lat”
T!2 = “lon”

Ts&time = (/0,5,10/)

; Coordinate arrays must

T&lat = fspan(-90,90,4) ; be 1D and same length

T&lon = fspan(-180,180,5) s; as dimension they represent
T&lat@units = “degrees north”

T&lon@units = “degrees east”

Variable: T
Type: float

Total Size: 240 bytes
60 values
Number of Dimensions: 3

Dimensions and sizes:

Coordinatesg
time: [0..10]
lat: [-90..90]
lon: [-180..180]

Important for graphics

[time | 3] x [lat | 4] x [lon | 5]

Introduction to NCL

“NCL

DEMO

Looking at variables with metadata

http://www.ncl.ucar.edu/Training/Workshops/interactive.shtml

Introduction to NCL

Array Subscripting

* Three kinds of array subscripting

1. Index (uses ;" and “::") (already covered)
2. Coordinate (uses curly braces ‘{‘and }’)
3. Named dimensions (uses ‘!’)

* You can mix subscripting types in one
variable

« Be aware of dimension reduction

* |Index subscripting is 0-based
(Fortran by default is 1-based)

http://www.ncl.ucar.edu/Document/Manuals/Ref ManuaI/NcIVariabIes.shtmI#Subsp[ipts

’{}
Introduction to NCL |' {NCL

Array coordinate subscripting, {...}

4

Consider T(ntime x nlat x nlon)

t

T(:,{-30:30},:) + all time and lon, lat 30°S to 30°N

t = T(0,{-20},{-180:35:3}) ; 1st time, lat nearest 20°S,
; every 3@ lon from 180°W to 35°E

1 ”

:+ t will be one-dimensional

4

Can mix index and coordinate subscripting

t =T(:,{-30:30},1::2) ; all time, lat 30°S to 30°N,
; every other lon starting with 2n»d

S
£7

Introduction to NCL |' ,NCL

- @

T R

$...$
(l...])

. Or ..

NCL syntax characters

comment (on line by itself, or at end of line)
reference/create attributes

reference/create named dimensions
reference/create coordinate variables

coordinate subscripting

enclose strings when (im/ex)port variables via addfile
array construct characters

array syntax

separator for named dimensions

continuation character

syntax for external shared objects (fortran/C)

use to (im/ex)port varlables V|a ?ddflle function Nm

Introduction to NC AN

Topics

e NetCDF files

Introduction to NCL

Looking at NetCDF files

 Many ways to look at NetCDF files
1. On the UNIX command line using “ncdump”
2. On the UNIX command line using “ncl_fileump”

3. With an NCL script using “addfile” function

Introduction to NCL |' | (NCL

DEMO

Looking at files with ncdump (NetCDF tool) and
ncl_filedump (NCL tool)

Rectilinear grids — grids whose latitude and longitude arrays are
“coordinate arrays” (one-dimensional arrays, and rightmost two

dimensions are nlat x nlon)

Curvilinear grids — grids whose latitude and longitude arrays are
two-dimensional arrays, and rightmost two dimensions are nlat x
nlon)

Unstructured grids — one-dimensional arrays whose latitude and
longitude arrays are also one-dimensional and all the same length

P N
Vrg. 2N
g)

Y i

| Oy

Introduction to NCL |' | \,NCL

Writing NCL script to open NetCDF file

“addfile” — open NetCDF, HDF4, HDFS5,
GRIB1, GRIB2, HDF-EOS2, HDF-EOSS5,
Shapefile

“addfile” can also be used to write NetCDF or
HDF4

Variables read off these files contain
everything, including metadata

Use “->” syntax to read a variable off the file

“addfiles” — read multiple files

Introduction to NCL |' {NCL

DEMO

Reading and writing NetCDF
files using “addfile”

Introduction to NCL |' | \,NCL

Important URLS

DKRZ NCL Tutorial Document
http://mms.dkrz.de/pdf/vis/NCL Tutorial V1.1.pdf

NCL Reference Manual

http://www.ncl.ucar.edu/Document/Manuals/Ref Manual/

Mini Reference Manual

http://www.ncl.ucar.edu/Document/Manuals/language man.pdf

Frequently Asked Questions
http://www.ncl.ucar.edu/FAQ/

Metadata conventions

http://www.unidata.ucar.edu/software/netcdf/examples/files.html

£
p

Introduction to NCL |' {NCL

Topics

e Website tour

Introduction to NCL

