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NCL team

Develop geoscientific analysis and visualization
software in close collaboration with climate and
weather scientists

Create extensive examples and documentation
Answer user questions on a daily (hourly!) basis
Provide hands-on training workshops 4-6x a year

Collaborate with outside groups and users to
enhance software
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Important note

* | am hard-of-hearing in both ears and read lips.

* Questions welcome! Raise hand and get my

attention first. You may need to gesture wildly.

* |f | don’t understand, speak up slightly and more

slowly. You shouldn’t have to yell. ©
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Thanks

* Karin Meier-Fleischer, DKRZ

—NCL Tutorial is well-written, lots of

examples!

* Michael Bottinger, DKRZ
* Niklas Rober, DKRZ
* Antje Weitz, Bjorn Stevens, MPI

* Wiebke Boehm, MPI | NCL
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Purpose of this workshop

Introduce you to NCL and its language features
Show you how to examine and read NetCDF files

Show you how to create high-quality visualizations
with NCL

Lab exercises: focused on reading NetCDF files and
creating two-dimensional visualizations and

animations
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Purpose of this lecture

Geared towards new users of NCL, but all users are welcome.
Assumption that you have some knowledge of programming.

Give you a quick overview of NCL

Introduce you to NCL language basics

Discuss importance of metadata

Demonstrate looking at NetCDF files
Demonstrate reading variables from NetCDF files

Do a website tour (if there’s time)
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Topics

Overview of NCL

NCL language basics
—How to run NCL

—Language syntax

—Variables (scalars and arrays)

Metadata
NetCDF files
Website tour

Introduction to NCL
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Topics

e Qverview of NCL
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First . . . an informal survey

 What software do you use?
— Fortran, C/C++

— Scripting languages and tools: Matlab, IDL, Python, R,
Ruby, Java, NCL, Climate data operators (CDO), NetCDF
operators (NCO), GrADS, Ncview, Avizo, ParaView

 What types of data do you work with?
NetCDF, HDF, HDF-EQS, GRIB, Shapefiles

* Tell us about yourself: name, where you work,

what kind of data or models do you work with,
what software do you currently use?
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NCAR Command Language (NCL)

A scripting language developed at NCAR and tailored
for the analysis and visualization of geoscientific data

Original Grid 2014.26m Potential Temp. (°C)

1.  Simple, robust file input and output

2. Hundreds of analysis (computational)
functions. Can call your own Fortran/C
code from NCL.

3. Visualizations (2D) are publication quality
and highly customizable

Regridded 2014.26m Potential Temp. (°C) 36

. Users range from grad students doing
individual research to programmers in
scientific organizations working on large
scale projects

-0.8

. UNIX binaries & source available, free

. Extensive website, training workshops

http://www.ncl.ucar.edu/




Topics

* NCL language basics
—How to run NCL
—Language syntax

—Variables (scalars and arrays)
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NCL basics

You can run NCL interactively or in batch
mode

We highly recommend batch mode!
Interactive is useful for trying things out

Batch mode: use a UNIX editor like “emacs”,
“vi’, “nedit”, “TextWrangler”, “NetBeans”

There are editor enhancements available
http://www.ncl.ucar.edu/Applications/editor.shtml
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Load "$NCARG_ROOT/11ib/ncarg/nclex/gsun/gsn_code.ncl”

: Load the NCL file that

contains the gsn_* functions used below.
begin
X = new(9,float) . Define two 1D arrays of 9 elements each.
y = new(9,float)
x = (/10.,20.,30.,40.,50.,60.,70.,80.,90./)
y = (/0.,0.71,1.,0.7,0.002,-0.71,-1.,-0.71, -0.003/)

= gsn_open_wks("x11","gsunOln") . Open an X11 workstation,

Sample of

plot = gsn_xy(wks,x,y,False) Draw an XY plot with 1 curve
----------- Begin second plot -------mmmmmmm
== (/(/0-; 0-7; 1-; 0-7; 0-; '0-7: '1-: '0-7: 0-/);\
(2., 2.7, 3., 2.7, 2., 1.3, 1., 1.3, 2./).\
/4., 4.7. 5., 4.7. 4.. 3.3. 3.. 3.3. .5/}

Define attributes of
: and y2.

x@long_name X

y2@long_name =

enhanced
“TextWrangler
editor screen

plot = gsn_xy(wks,x,y2,False) Draw an XY plot with 3 curves
---------- Begin third plot ---------mmmmmmii o
resources = True Indicate you want to
set some resources.
resources@xyLineColors = (/2,3,4/) Define line colors.
resources@xyLineThicknesses = (/1.,2.,5./) ; Define line thicknesses
(1.0 1s the default)
plot = gsn_xy(wks,x,y2, resources) Draw an XY plot
---------- Begin fourth plot ---------mmmmmm
resources@tiMainString = "X-Y plot" Title for the XY plot
resources@tiXAxisString = "X Axis" L#Dpl for the X axis
resources@tiYAxisString = "Y Axis" Label for the Y axis
resources@tiMainFont = "Helvetica" ; Font for title
resourcesatiXAxisFont = "Helvetica" ; Font for X axis label

3



Running NCL interactively

Open a UNIX terminal window and type:

ncl <return>

Several lines will be echoed. You will get a prompt where you can
type commands:

Copyright (C) 1995-2013 - All Rights Reserved
University Corporation for Atmospheric Research
NCAR Command Language Version 6.1.2

The use of this software is governed by a License Agreement.
See http://www.ncl.ucar.edu/ for more details.
ncl 0> print("hello")

(0) hello

ncl 1> quit
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Command line options

To get the version:

ncl —V
1.2

O\ o©

To get a list of other options:

s ncl —h

Usage: ncl -fhnpxV <args> <file.ncl>
—-f: Use New File Structure, and NetCDF4 features
-n: don't enumerate values in print()
-p: don't page output from the system() command
—-X: echo NCL commands
-V: print NCL version and exit

-h: print this message and exit
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Running NCL in batch mode

Create an NCL script using a UNIX editor

Call it whatever you like. We recommend ending it
with “.ncl”, like “plot_icon.ncl”

|II

Run “ncl” on it on the UNIX command line:

ncl plot icon.ncl

Printed output will appear on UNIX standard out

Graphical output will go wherever you tell it (later)
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NCL language basics

Optionally start and end script with “begin” and “end”

Comments start with “;” —they can be on line by themselves

or at the end of a line.

Code can start anywhere on a line

Strings are always enclosed in double quotes (“Hello DKRZ”)
A routine that returns a value is called a “function”

A routine that doesn’t return a value is called a “procedure”

Continuation character is a backwards slash (“\”)

£
p
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NCL basics 1.ncl

begin

;——-0Open a netCDF file and print contents
f = addfile (“ECHAM5 OM AlB 2001 0101-1001 2D.nc”,”r")

;———Read “slp” off NetCDF file and print its info

slp = f->slp ; (time,lat,lon)
printVarSummary(slp)
print(min(slp)) ; function inside a procedure

print(max(slp))

;j———-Calculate running average across time
slp ts = runave (slp, 3, 0)

print (min(slp ts))

print (max(slp ts))

Vs RN
|
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Variable: slp Output from “NCL_basics 1.ncl” script

Type: float
Total Size: 2949120 bytes
737280 wvalues
Number of Dimensions: 3
Dimensions and sizes: [time | 40] x [lat | 96] x [lon | 192]
Coordinates:
time: | 0.. 234]
lat: [88.57216851400727..-88.57216851400727]
lon: [-180..178.125]
Number Of Attributes: 5
long name :mean sea level pressure

units : Pa
code : 151
table : 128
grid type :gaussian
(0) 94403.69
(0) 105950.7
(0) 94422.02

(0) 105835.5



print versus printVarSummary

Both procedures important for debugging!

x = (/1,2,3,-999,5/)
print(x)
printVarSummary (x)

“Look at your data!”

print printVarSummary
Variable: x Variable: x
Type: integer Type: integer
Total Size: 20 bytes Total Size: 20 bytes

5 values 5 values

Number of Dimensions: 1 Number of Dimensions: 1
Dimensions and sizes: [5] Dimensions and sizes: [5]
Coordinates:
(0) 1
(1) 2
(2) 3
(3) -999
(4) 5 SR

[/“ b l.\::
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NCL basics 2.ncl

;——-Note: no begin or end

;——-0Open a netCDF file and print contents
filename = “ECHAM5 OM AlB 2001 0101-1001 2D.nc”
print (“Opening a NetCDF file called “ + filename)
f = addfile (filename, “r*)

;j———Read first time step and print info
slp = £->slp(0,:,:) ; (lat x lon)
printVarSummary(slp)
print(“min/max slp = “ + min(slp) + “/“ + max(slp))

;———Calculate average across all values
slp avg = avg (slp) ; returns a single value
printVarSummary(slp avg)
print (“Average of slp = “ + slp avg)

AN,
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Opening a NetCDF file called ECHAM5 OM AlB 2001 0101-1001_ 2D.nc

Variable: slp
Type: float
Total Size: 73728 bytes
18432 values
Number of Dimensions: 2
Dimensions and sizes: [lat | 96] x [lon | 192]
Coordinates:
lat: [88.57216851400727..-88.57216851400727]
lon: [-180..178.125]
Number Of Attributes: 6

time : 0

long name : mean sea level pressure
units : Pa

code : 151

table : 128

grid type : gaussian

Output from “NCL_basics_2.ncl”
script which was executed with

Variable: slp avg command line option “-n”:
Type: float
Total Size: 4 bytes

min/max slp = 96715.2/105364

ncl —n NCL basics 2.ncl

1 values
Number of Dimensions: 1
Dimensions and sizes: [1]

Coordinates:
Average of slp = 100941



Scalar variables

;———-ExXplicit scalar assignment

ndys = 30 ; type integer
x £ = 2983.599918 ; type float
long name = “Water Vapor” ; type string
;——-Use “literals” to force a type

d = 3.14159265358979d ; double

dim = 326761 ; long

short val = 10h ; short
;——-Logicals have no quotes

done = True + False
s——-Variables are case-sensitive

Lat = 10.8 » these are three

LAT = 90. + different variables

lat = -30
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Mixing types: calculations and strings

;——-Mixing types, *“largest” type used
i=17/10 ; integer (i=0)
x = 7/10. ; float (x=0.7)

y = (22./7)/2d ; double (1.571428537368774)

z = (1+5) * X ; float (z=3.5)

r——=-"atan” returns a float

rad2deg = 45/atan(1l) ; 57.29578

;——-Use “+"” for string concatenation

str = “x = “ 4+ 2 ;”X=2"

J = 2

s = “var " + (j+1) + “ £~ ; s = “var 3 f“=
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Coercing values to other types

+ Use conversion functions “toxxx” to convert a
; value to a “lower” type. Precision will be
; compromised.

dx = 12345.678901234d ; dx is double
fx = tofloat(dx) ; £fx = 12345.68
i1xX = toint(dx) ; 1x = 12345
iy = totype(x,”integer”) ; iy = 12345

;———-Strings are handled differently

s = tostring(dx) ; “12345.678901"
s = tostring(iy) ; S = "12345"
s = “" + iy ; S = “12345"

;——-Use “typeof” function to print type
print (typeof (dx)) ; “double” e
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Changing variables to a “higher” type

ff = 1.5e20 float

f£f = 1000 ; Assigning integer value to
; float variable is okay!
ff = 1d36 ; Assigning double value
; to float not okay.
; Error: “type mismatch”
;——-Use delete or reassignment (:=) operator
delete(ff)
f£f = 1d36 ;s double
s———This will work too
ff = 1.5e20
ff := 1d36
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NCL statements

* “if” statement

* “do” loops

* “load” to load other NCL scripts

* “function” to define your own function

* “procedure” to define your own procedure
¢ “exit” to exit NCL script at that point

* “quit” if you are running interactively

http://www.ncl.ucar.edu/Document/Manuals/Ref Manual/NclStatements.shtml
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“If” and “do” statements

if(varname.eq.”slp”.and.units.eq.”Pa”) then
do something

else + No “else if"”
do something else
end if ; There must be a space

+ between “end” and “if”

do i=0,ndims-1 + do i=ndims-1,0,1 for reverse
do something

end do ; space between “end” and “do”

J =0

found = False
do while (j.lt.nvalues .and. .not.found)
if (something) then
do something
found = True
end 1if
do something
increment j in some fashion
end do




Trick to get around lack of “elseif”

1if(x.1t.0) then
do something

else if(x.gt.0) then
do something else

else s+ Xx =0
do something else

end 1f ; Need one of these for every “if”
end 1f
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Array basics

Row major like C/C++ (Fortran is column major)

Leftmost dimension varies the slowest,
rightmost varies fastest

Use “(/" and “/)" to create arrays

Dimensions are numbered left to right (0,1,...)
Indexes (subscripts) start at 0 (O to n-1)

Use parentheses to access elements

Can do calculations across whole arrays without
looping
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Array basics

;——-One-dimensional (1D) arrays, 3 elements
lat = (/-80,0.,80/) + float

LAT = (/-80,0,80/) ; integer

;———-1D string array, 4 elements

MM = (/"March”, "April”, "May”, "June”/)

—-—-—-Create 3x2 two-dimensional (2D) double array

z = (/(/1,24/),(/3,4/),(/9,8/)/)

;——-Assume “X” 1s a one-dimensional array

dx = x(2) — x(1) ; 3*@ value minus 2®*¢ value
j———Assume Y 1is three-dimensional (nx,ny,nz)

vyl = vy(0,0,0) ; vyl = first value of y
yn = y(nx-1,ny-1,nz-1) ; yn = last value of y..
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Array subscripting

* Three kinds of array subscripting

1. Index (uses ‘:’ and “::’)

2. Coordinate (uses curly braces ‘{“and ‘}’)

3. Named dimensions (uses !")

* You can mix subscripting types in one variable

e Be aware of dimension reduction

* |Index subscripting is 0-based
(Fortran by default is 1-based)
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Array index subscripting, : and ::

j——-Assume T is a 3D array (ntime x nlat x nlon)
t =T ; Copy entire array to new variable
t = T(:,:,:) s Don't need to do this!
t = (/T/) Copy entire array, don' t copy metadata

e e

(_FillValue is retained)

;——-The following examples create a 2D array *“t” from “T”
t = T(0,:,::5) 15t time index, all lat, every 5t lon
(nlat x nlon/5)

e e

t =T(0,::-1,:50) 1st time index, reverse lat,

first 51 lons (nlat x 51)

e e

t = T(:1,45,10:20) ; 1St two time indices, 46 index of lat,
; 11th-21st indices of lon (2 x 11)
;——-To prevent dimension reduction, use n:n
t = T(0:0,:,::5) ; 1 x nlat x nlon/5
t = T(:1,45:45,10:20) ; 2 X1 x 21

o %Y
A
L
il
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Calculations on arrays

* Don’t need to loop to do array calculations

« Arrays need to be same size, but scalars can

be used anywhere; scalars are arrays with

one dimension and one element

« Use “conform” function if you need to

conform one array to size of another
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Calculations on arrays

;———-Assume “clat” and “clon” are lat/lon arrays in radians
rad2deg = 45./atan(1l.) ; radians to degrees

lat = clat * rad2deg ; Convert to degrees

lon = clon * rad2deg

lat@units = “degrees north” ; Good idea to do this!
lon@units = “degrees east”

s———Can also do this

lat = (/clat * rad2deg/) ; Special: don’t copy metadata

;——-Be careful with ordering of syntax
zlev = (-7*log(lev/10"3)) ; evaluated as
;7 (-7)*log(lev/(107°3))

Use “‘conform” to promote an array to the size of another.
0 1 2 3

Assume ‘Twk is (time,lat,lon,lev), and

“ptp” is (time,lat,lon)

0 1 2
ptropWk = conform(Twk, ptp, (/0,1,2/)) ; time,lat,lon,lexﬁ\

Introduction to NCL |' | (NCL
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Array efficiency

s———Inefficient
do i=0,ny-1
do j=0,nx-1
x(1i,3) = y(i,3) * 0.01
end do

end do
s———Efficient

x = y*0.01
s——=Inefficient

do i=0,nlon-1
if(lon(i).1t.0) then
lon(i) = lon(i) + 360.
end if
end do
s;———Efficient
lon = where(lon.l1lt.0,lon+360,1lon)

Introduction to NCL
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Array reorder, reshape, reverse

;———-Reshaping an array
t1D = ndtooned(T) ; Convert to 1D array
t2D = onedtond(tlD, (/N,M/) ) ; Convert to N X M array

;———-Reordering an array, uses “named dimensions”
; Let T(time,lat,lon)
t = T(lat|:,lon]|:,time]:) ; Can’t assign to same var
;———Reversing dimensions of an array
; Let T(lev,lat,lon)
T = T(::-1,:,:) ; Will reverse coordinate array too,

SN
7 T
a2
| S &

=
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Special functions for arrays

s ———Very useful “where” function

4

q = where(z.gt.pi .and. z.lt.pi2, pi*z, 0.5%z)

“num” , “anY” , “a]_ l ”
npos = num (XTemp.gt.0.0)

if (.not.any(string array.eq. hello world”)) then
do something

end if

if (all(xTemp.lt.0)) then
do something
end if

“ind” function, only on 1D arrays
ii = ind(pr.lt.500. .and. pr.gt.60.)

ey
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Useful array functions

“dimsizes” — get dimension sizes
« “any” or “all”’ — check array values

« “where” — perform operation on array based on conditional
statements

« “conform” — make a smaller array conform to size of larger array
* “mask” — mask an array based on another array

* “ind” — get the indexes of a one-dimensional array where an
array condition is True

* “reshape” — reshape an array to another dimension size

« “ndtooned” and “onedtond” — convert arrays from one-
dimensional to multi-dimensional, and vice versa

http://www.ncl.ucar.edu/Document/Functions/array_manip.shtmi
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DEMO

* Creating scalar and array variables
* Calling NCL functions
* Using “print” and “printVarSummary”

http://www.ncl.ucar.edu/Training/Workshops/interactive.shtml

s N
‘wﬁf"
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Topics

e Metadata
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Metadata

Metadata is information about a variable.

Metadata can consist of:
— Attributes (can describe files and variables)
— Named dimensions (describes a variable’s dimensions)

— Coordinate arrays (coordinates for data values)

11

_Fillvalue” attribute is special: indicates a variable’ s
missing value

When you do an “ncdump -h” or “ncl_filedump” on a “self-
describing” data file, you see all the metadata

NCL will use metadata in many cases,

Introduction to NCL |' MCL




Why is metadata important?

« Can give important information about a variable: units,
description, location (lat/lon), date, how it was calculated,

etc.

« Languages like NCL, GrADS, Ncview, CDO, NCO,
depend on metadata to correctly interpret data for

calculations and graphics

« When you share data files with someone else, metadata

IS like a document for your data.

NetCDF Climate and Forecast (CF) Metadata Conventions
http://cf-pcmdi.linl.gov
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Metadata assignment (attributes)

Use the “@” symbol to assign attribute metadata.
Useful for assigning units, long names, missing vals
Assume ‘T is 3 x 4 x 5 float array of temperature
values in degrees celsius.

e e e e

Te Fillvalue = -999 ; Missing value
T@units = “deg C”

T@long name = “temperature”

T@wgts = (/ 0.25, 0.5, 0.25 /)
printVarSummary (T) ; To see contents of T

Variable: T

Type: float

Total Size: 240 bytes
60 wvalues

Number of Dimensions: 3

printVarSummary(T) results

Dimensions and sizes: [3] x [4] x [5]
Coordinates:
Number Of Attributes: 5
wgts : ( 0.25, 0.5, 0.25 )
long name : temperature
units : deg C

_Fillvalue : -999




Metadata assignment (named dimensions)

Named dimensions are useful for arrays.
Use the “!” symbol to name dimensions.
Assume ‘T is same 3D array as before

e e e

T!0 = “time” ; Leftmost dimension
T!1 = “lat” ; Middle dimension
T!2 = “lon” ; Rightmost dimension

printVarSummary(T) ; To see metadata of T

Variable: T

Type: float

Total Size: 240 bytes
60 values

Number of Dimensions: 3

Dimensions and sizes: I [time | 3] x [lat | 4] x [lon | 5]|
Coordinates:
Number Of Attributes: 5

wgts ( 0.25, 0.5, 0.25 )

long name : temperature

units : deg C

_Fillvalue : =999




Missing values (*_FillValue™ attribute)
“ FillValue” is a NetCDF and NCL reserved attribute

Must be same as type of variable

“missing_value” attribute has no special status to
NCL.

If “T" has “missing_value” attribute and no
“ FillValue™

TQ@ FillValue = T@missing value
Best not to use zero as a _FillValue

Default missing values for all NCL variable types:

http.//www.ncl.ucar.edu/Document/Manuals/Ref Manual/NclVariables.shtml
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Missing values in an NCL script

* Most NCL functions ignore _FillValue:

X = (/1,2,3,-999,5/) ; no msg val yet
xXavg = avg(x) ; = =-197.6

x@ FillValue = -999 ; now has a msg val
xXavg = avg(x) ; (1+2+3+5)/4 = 2.7

« Use “default_fillvalue™ to set a missing value for a
variable that doesn’t have one:

x@ Fillvalue default fillvalue(typeof (x))
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Missing value functions

« Use any, all, and ismissing functions to query a
variable for missing values:

if (.not.any(ismissing(T))) then
do something

end 1f

1f (all(ismissing(T))) then
do something

end if

* Use num & ismissing to count missing values:

nmsg = num(ismissing(T))

Introduction to NCL |'
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Metadata assignment (coordinate arrays)

; Coordinate arrays are 1D arrays representing values

.
14

.
4

for dimensions of an array. Use the “&”

symbol to assign

coordinate values; must name dimensions first.

T!0 = “time”
T!1 = “lat”
T!2 = “lon”

Ts&time = (/0,5,10/)

; Coordinate arrays must

T&lat = fspan(-90,90,4) ; be 1D and same length

T&lon = fspan(-180,180,5) s; as dimension they represent
T&lat@units = “degrees north”

T&lon@units = “degrees east”

Variable: T
Type: float

Total Size: 240 bytes
60 values
Number of Dimensions: 3

Dimensions and sizes:

Coordinatesg
time: [0..10]
lat: [-90..90]
lon: [-180..180]

Important for graphics

[time | 3] x [lat | 4] x [lon | 5]

Introduction to NCL
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DEMO

Looking at variables with metadata

http://www.ncl.ucar.edu/Training/Workshops/interactive.shtml
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Array Subscripting

* Three kinds of array subscripting

1. Index (uses ;" and “::") (already covered)
2. Coordinate (uses curly braces ‘{‘and }’)
3. Named dimensions (uses ‘!’)

* You can mix subscripting types in one
variable

« Be aware of dimension reduction

* |Index subscripting is 0-based
(Fortran by default is 1-based)

http://www.ncl.ucar.edu/Document/Manuals/Ref ManuaI/NcIVariabIes.shtmI#Subsp[ipts

’{}
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Array coordinate subscripting, {...}

4

Consider T(ntime x nlat x nlon)

t

T(:,{-30:30},:) + all time and lon, lat 30°S to 30°N

t = T(0,{-20},{-180:35:3}) ; 1st time, lat nearest 20°S,
; every 3@ lon from 180°W to 35°E

1 ”

:+ t will be one-dimensional

4

Can mix index and coordinate subscripting

t =T(:,{-30:30},1::2) ; all time, lat 30°S to 30°N,
; every other lon starting with 2n»d

S
£7
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- @

T R

$...$
(l...])

. Or ..

NCL syntax characters

comment (on line by itself, or at end of line)
reference/create attributes

reference/create named dimensions
reference/create coordinate variables

coordinate subscripting

enclose strings when (im/ex)port variables via addfile
array construct characters

array syntax

separator for named dimensions

continuation character

syntax for external shared objects (fortran/C)

use to (im/ex)port varlables V|a ?ddflle function Nm
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Topics

e NetCDF files
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Looking at NetCDF files

 Many ways to look at NetCDF files
1. On the UNIX command line using “ncdump”
2. On the UNIX command line using “ncl_fileump”

3. With an NCL script using “addfile” function
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DEMO

Looking at files with ncdump (NetCDF tool) and
ncl_filedump (NCL tool)

Rectilinear grids — grids whose latitude and longitude arrays are
“coordinate arrays” (one-dimensional arrays, and rightmost two

dimensions are nlat x nlon)

Curvilinear grids — grids whose latitude and longitude arrays are
two-dimensional arrays, and rightmost two dimensions are nlat x
nlon)

Unstructured grids — one-dimensional arrays whose latitude and
longitude arrays are also one-dimensional and all the same length

P N
Vrg. 2N
g )

Y i

| Oy
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Writing NCL script to open NetCDF file

“addfile” — open NetCDF, HDF4, HDFS5,
GRIB1, GRIB2, HDF-EOS2, HDF-EOSS5,
Shapefile

“addfile” can also be used to write NetCDF or
HDF4

Variables read off these files contain
everything, including metadata

Use “->” syntax to read a variable off the file

“addfiles” — read multiple files
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DEMO

Reading and writing NetCDF
files using “addfile”
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Important URLS

DKRZ NCL Tutorial Document
http://mms.dkrz.de/pdf/vis/NCL Tutorial V1.1.pdf

NCL Reference Manual

http://www.ncl.ucar.edu/Document/Manuals/Ref Manual/

Mini Reference Manual

http://www.ncl.ucar.edu/Document/Manuals/language man.pdf

Frequently Asked Questions
http://www.ncl.ucar.edu/FAQ/

Metadata conventions

http://www.unidata.ucar.edu/software/netcdf/examples/files.html

£
p

Introduction to NCL |' {NCL




Topics

e Website tour
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