
NCAR is sponsored by the National Science Foundation

NCL Visualization Workshop
Part 1: Introduction to NCL

November 28-29, 2013
Deutsches Klimarechenzentrum

Karin Meier-Fleischer, DKRZ and Mary Haley, NCAR

Dennis Shea
Science guy
Data expert

Trainer

Dave Brown
NCL Tech Lead

Everything

Mary Haley
Project lead

Trainer

Rick Brownrigg
Developer
Research

Wei Huang
Developer

Data Formats

Adam Phillips
Science guy

Graphical expert

NCL team

Dennis Shea
Science guy
Data expert

Trainer

Dave Brown
NCL Tech Lead

Everything

Mary Haley
Project lead

Trainer

Rick Brownrigg
Developer
Research

•  Develop geoscientific analysis and visualization
software in close collaboration with climate and
weather scientists

•  Create extensive examples and documentation

•  Answer user questions on a daily (hourly!) basis

•  Provide hands-on training workshops 4-6x a year

•  Collaborate with outside groups and users to
enhance software

Wei Huang
Developer

Data Formats

Adam Phillips
Science guy

Graphical expert

NCL team

14 NCL Workshops in last 2 years

CERFACS, Toulouse, France!University of Hawaii @ Manoa!

NCAR! University of Alaska, Fairbanks!

Jackson State, Mississippi!

Yale!

CERFACS, Toulouse, France!University of Hawaii @ Manoa!

NCAR! University of Alaska, Fairbanks!

Jackson State, Mississippi!

Yale!

CERFACS, Toulouse, France!University of Hawaii @ Manoa!

NCAR! University of Alaska, Fairbanks!

Jackson State, Mississippi!

Yale!

CERFACS, Toulouse, France!University of Hawaii @ Manoa!

NCAR! University of Alaska, Fairbanks!

Jackson State, Mississippi!

Yale!

68 workshops since Feb 2000, 1041 students

University of Hawaii @ Manoa CERFACS, Toulouse, France Jackson State, Mississippi

Yale School of Forestry and
Environmental Studies

NCAR, Boulder University of Alaska @ Fairbanks

4 NCL Workshops at MPI

CERFACS, Toulouse, France!University of Hawaii @ Manoa!

NCAR! University of Alaska, Fairbanks!

Jackson State, Mississippi!

Yale!

CERFACS, Toulouse, France!University of Hawaii @ Manoa!

NCAR! University of Alaska, Fairbanks!

Jackson State, Mississippi!

Yale!

CERFACS, Toulouse, France!University of Hawaii @ Manoa!

NCAR! University of Alaska, Fairbanks!

Jackson State, Mississippi!

Yale!

CERFACS, Toulouse, France!University of Hawaii @ Manoa!

NCAR! University of Alaska, Fairbanks!

Jackson State, Mississippi!

Yale!

UFRN Natal 2013

MPI Hamburg 2008-2013

CERFACS Toulouse 2012

ETH Zürich 2010

BoM Melbourne 2011 UNSW Sydney 2011

International
Workshops

Introduction to NCL

Important note

•  I	
 am	
 hard-­‐of-­‐hearing	
 in	
 both	
 ears	
 and	
 read	
 lips.	

•  Ques7ons	
 welcome!	
 Raise	
 hand	
 and	
 get	
 my	

a=en7on	
 first.	
 You	
 may	
 need	
 to	
 gesture	
 wildly.	

•  If	
 I	
 don’t	
 understand,	
 speak	
 up	
 slightly	
 and	
 more	

slowly.	
 You	
 shouldn’t	
 have	
 to	
 yell.	
 	
 J	

Introduction to NCL

Thanks

•  Karin	
 Meier-­‐Fleischer,	
 DKRZ	

− NCL	
 Tutorial	
 is	
 well-­‐wri=en,	
 lots	
 of	

examples!	

• Michael	
 BöPnger,	
 DKRZ	

• Niklas	
 Röber,	
 DKRZ	

•  Antje	
 Weitz,	
 Bjorn	
 Stevens,	
 MPI	

• Wiebke	
 Boehm,	
 MPI	

Introduction to NCL

Purpose of this workshop

•  Introduce	
 you	
 to	
 NCL	
 and	
 its	
 language	
 features	

•  Show	
 you	
 how	
 to	
 examine	
 and	
 read	
 NetCDF	
 files	

•  Show	
 you	
 how	
 to	
 create	
 high-­‐quality	
 visualiza7ons	

with	
 NCL	

•  Lab	
 exercises:	
 focused	
 on	
 reading	
 NetCDF	
 files	
 and	

crea7ng	
 two-­‐dimensional	
 visualiza7ons	
 and	

anima7ons	

Introduction to NCL

Purpose of this lecture

•  Give	
 you	
 a	
 quick	
 overview	
 of	
 NCL	

•  Introduce	
 you	
 to	
 NCL	
 language	
 basics	

•  Discuss	
 importance	
 of	
 metadata	

•  Demonstrate	
 looking	
 at	
 NetCDF	
 files	

•  Demonstrate	
 reading	
 variables	
 from	
 NetCDF	
 files	

•  Do	
 a	
 website	
 tour	
 (if	
 there’s	
 7me)	

Geared	
 towards	
 new	
 users	
 of	
 NCL,	
 but	
 all	
 users	
 are	
 welcome.	

Assump9on	
 that	
 you	
 have	
 some	
 knowledge	
 of	
 programming.

Introduction to NCL

Topics

•  Overview	
 of	
 NCL	

•  NCL	
 language	
 basics	

− How	
 to	
 run	
 NCL	

− Language	
 syntax	

− Variables	
 (scalars	
 and	
 arrays)	

•  Metadata	

•  NetCDF	
 files	

•  Website	
 tour	

Introduction to NCL

Topics

•  Overview	
 of	
 NCL	

•  NCL	
 language	
 basics	

− How	
 to	
 run	
 NCL	

− Language	
 syntax	

− Variables	
 (scalars	
 and	
 arrays)	

•  Metadata	

•  NetCDF	
 files	

•  Website	
 tour	

Introduction to NCL

First . . . an informal survey

•  What	
 so_ware	
 do	
 you	
 use?	

− Fortran,	
 C/C++	

− Scrip7ng	
 languages	
 and	
 tools:	
 Matlab,	
 IDL,	
 Python,	
 R,	

Ruby,	
 Java,	
 NCL,	
 Climate	
 data	
 operators	
 (CDO),	
 NetCDF	

operators	
 (NCO),	
 GrADS,	
 Ncview,	
 Avizo,	
 ParaView	

•  What	
 types	
 of	
 data	
 do	
 you	
 work	
 with?	

NetCDF,	
 HDF,	
 HDF-­‐EOS,	
 GRIB,	
 Shapefiles	

•  Tell	
 us	
 about	
 yourself:	
 name,	
 where	
 you	
 work,	

what	
 kind	
 of	
 data	
 or	
 models	
 do	
 you	
 work	
 with,	

what	
 so_ware	
 do	
 you	
 currently	
 use?	

•  Users range from grad students doing
individual research to programmers in
scientific organizations working on large
scale projects

•  UNIX binaries & source available, free

•  Extensive website, training workshops

NCAR Command Language (NCL)

A scripting language developed at NCAR and tailored
for the analysis and visualization of geoscientific data

http://www.ncl.ucar.edu/

1.  Simple, robust file input and output
2.  Hundreds of analysis (computational)

functions. Can call your own Fortran/C
code from NCL.

3.  Visualizations (2D) are publication quality
and highly customizable

Introduction to NCL

Topics

•  Overview	
 of	
 NCL	

•  NCL	
 language	
 basics	

− How	
 to	
 run	
 NCL	

− Language	
 syntax	

− Variables	
 (scalars	
 and	
 arrays)	

•  Metadata	

•  NetCDF	
 files	

•  Website	
 tour	

Introduction to NCL

NCL basics

•  You	
 can	
 run	
 NCL	
 interac7vely	
 or	
 in	
 batch	

mode	

•  We	
 highly	
 recommend	
 batch	
 mode!	

•  Interac7ve	
 is	
 useful	
 for	
 trying	
 things	
 out	

•  Batch	
 mode:	
 use	
 a	
 UNIX	
 editor	
 like	
 “emacs”,	

“vi”,	
 “nedit”,	
 “TextWrangler”,	
 “NetBeans”	

•  There	
 are	
 editor	
 enhancements	
 available	

h=p://www.ncl.ucar.edu/Applica7ons/editor.shtml	

Sample of
enhanced

“TextWrangler”
editor screen

Introduction to NCL

Running NCL interactively

Open	
 a	
 UNIX	
 terminal	
 window	
 and	
 type:	

	

ncl <return>!

	

Several	
 lines	
 will	
 be	
 echoed.	
 You	
 will	
 get	
 a	
 prompt	
 where	
 you	
 can	

type	
 commands:	

 
Copyright (C) 1995-2013 - All Rights Reserved!
University Corporation for Atmospheric Research!
NCAR Command Language Version 6.1.2!
The use of this software is governed by a License Agreement.!
See http://www.ncl.ucar.edu/ for more details.!
ncl 0> print("hello")!
(0) hello!
ncl 1> quit!

Introduction to NCL

Command line options

To	
 get	
 the	
 version:	

	

% ncl –V  
6.1.2!

	

To	
 get	
 a	
 list	
 of	
 other	
 op7ons:	

 
% ncl –h  
Usage: ncl -fhnpxV <args> <file.ncl>!

! -f: Use New File Structure, and NetCDF4 features!
! -n: don't enumerate values in print()!
! -p: don't page output from the system() command!
! -x: echo NCL commands!
! -V: print NCL version and exit!
! -h: print this message and exit!

 
!

Introduction to NCL

Running NCL in batch mode

•  Create	
 an	
 NCL	
 script	
 using	
 a	
 UNIX	
 editor	

•  Call	
 it	
 whatever	
 you	
 like.	
 We	
 recommend	
 	
 ending	
 it	

with	
 “.ncl”,	
 like	
 “plot_icon.ncl”	

•  Run	
 “ncl”	
 on	
 it	
 on	
 the	
 UNIX	
 command	
 line:	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ncl plot_icon.ncl	

•  Printed	
 output	
 will	
 appear	
 on	
 UNIX	
 standard	
 out	

•  Graphical	
 output	
 will	
 go	
 wherever	
 you	
 tell	
 it	
 (later)	

 
!

Introduction to NCL

NCL language basics

•  Op7onally	
 start	
 and	
 end	
 script	
 with	
 “begin”	
 and	
 “end”	

•  Comments	
 start	
 with	
 “;”	
 –	
 they	
 can	
 be	
 on	
 line	
 by	
 themselves	

or	
 at	
 the	
 end	
 of	
 a	
 line.	

•  Code	
 can	
 start	
 anywhere	
 on	
 a	
 line	

•  Strings	
 are	
 always	
 enclosed	
 in	
 double	
 quotes	
 (“Hello	
 DKRZ”)	

•  A	
 rou7ne	
 that	
 returns	
 a	
 value	
 is	
 called	
 a	
 “func7on”	

•  A	
 rou7ne	
 that	
 doesn’t	
 return	
 a	
 value	
 is	
 called	
 a	
 “procedure”	

•  Con7nua7on	
 character	
 is	
 a	
 backwards	
 slash	
 (“\”)	

Introduction to NCL

NCL_basics_1.ncl

begin  
 
;---Open a netCDF file and print contents!
 f = addfile (“ECHAM5_OM_A1B_2001_0101-1001_2D.nc”,”r”)!
 !
;---Read “slp” off NetCDF file and print its info!
 slp = f->slp ; (time,lat,lon)!
 printVarSummary(slp)!
 print(min(slp)) ; function inside a procedure!
 print(max(slp))!
!
;---Calculate running average across time!
 slp_ts = runave (slp, 3, 0)!
 print(min(slp_ts))  
 print(max(slp_ts))  
!
end!

Variable: slp!
Type: float!
Total Size: 2949120 bytes!
 737280 values!
Number of Dimensions: 3!
Dimensions and sizes: ![time | 40] x [lat | 96] x [lon | 192]!
Coordinates: !
 time: [0.. 234]!
 lat: [88.57216851400727..-88.57216851400727]!
 lon: [-180..178.125]!
Number Of Attributes: 5!
 long_name :!mean sea level pressure!
 units : !Pa!
 code : !151!
 table : !128!
 grid_type :!gaussian!
(0) 94403.69!
(0) 105950.7!
(0) 94422.02!
(0) 105835.5!

Output from “NCL_basics_1.ncl” script

Introduction to NCL

x = (/1,2,3,-999,5/)!
print(x)!
printVarSummary(x)

Variable: x!
Type: integer!
Total Size: 20 bytes!
 5 values!
Number of Dimensions: 1!
Dimensions and sizes: [5]!
Coordinates: !
(0) 1!
(1) 2!
(2) 3!
(3) -999!
(4) 5!

Variable: x!
Type: integer!
Total Size: 20 bytes!
 5 values!
Number of Dimensions: 1!
Dimensions and sizes: [5]!

print! printVarSummary!

print versus printVarSummary
Both procedures important for debugging!

“Look at your data!”

Introduction to NCL

;---Note: no begin or end  
!
;---Open a netCDF file and print contents !
 filename = “ECHAM5_OM_A1B_2001_0101-1001_2D.nc”!
 print(“Opening a NetCDF file called “ + filename)!
 f = addfile (filename, “r“)!
!
;---Read first time step and print info !
 slp = f->slp(0,:,:) ; (lat x lon) !
 printVarSummary(slp)!
 print(“min/max slp = “ + min(slp) + “/“ + max(slp))!
!
;---Calculate average across all values !
 slp_avg = avg (slp) ; returns a single value!
 printVarSummary(slp_avg)!
 print(“Average of slp = “ + slp_avg)!

NCL_basics_2.ncl

Opening a NetCDF file called ECHAM5_OM_A1B_2001_0101-1001_2D.nc!
!
Variable: slp!
Type: float!
Total Size: 73728 bytes!
 18432 values!
Number of Dimensions: 2!
Dimensions and sizes: ![lat | 96] x [lon | 192]!
Coordinates: !
 lat: [88.57216851400727..-88.57216851400727]!
 lon: [-180..178.125]!
Number Of Attributes: 6!
 time : ! 0!
 long_name : !mean sea level pressure!
 units : !Pa!
 code : !151!
 table : !128!
 grid_type : !gaussian!
min/max slp = 96715.2/105364!
!
Variable: slp_avg!
Type: float!
Total Size: 4 bytes!
 1 values!
Number of Dimensions: 1!
Dimensions and sizes: ![1]!
Coordinates: !
Average of slp = 100941!

Output from “NCL_basics_2.ncl”
script which was executed with

command line option “-n”:

ncl –n NCL_basics_2.ncl!

Introduction to NCL

Scalar variables
;---Explicit scalar assignment  
ndys = 30 ; type integer  
x_f = 2983.599918 ; type float  
long_name = “Water Vapor” ; type string  
 

;---Use “literals” to force a type  
d = 3.14159265358979d ; double  
dim = 32676l ; long  
short_val = 10h ; short  
 
;---Logicals have no quotes  
done = True ; False!

;---Variables are case-sensitive  
Lat = 10.8 ; these are three  
LAT = 90. ; different variables  
lat = -30!

Introduction to NCL

Mixing types: calculations and strings

;---Mixing types, “largest” type used  
i = 7/10 ; integer (i=0)  
x = 7/10. ; float (x=0.7)!
 

y = (22./7)/2d ; double (1.571428537368774)!
 

z = (i+5) * x ; float (z=3.5)!

;---”atan” returns a float  
rad2deg = 45/atan(1) ; 57.29578!

;---Use “+” for string concatenation  
str = “x = “ + 2 ; “x = 2”!

j = 2  
s = “var_” + (j+1) + “_f“ ; s = “var_3_f“!

Introduction to NCL

Coercing values to other types
;  
; Use conversion functions “toxxx” to convert a  
; value to a “lower” type. Precision will be  
; compromised.  
;  

dx = 12345.678901234d ; dx is double  
fx = tofloat(dx) ; fx = 12345.68  
ix = toint(dx) ; ix = 12345  
iy = totype(x,”integer”) ; iy = 12345  
!

;---Strings are handled differently  
s = tostring(dx) ; “12345.678901”  
s = tostring(iy) ; s = “12345”  
s = “” + iy ; s = “12345”!

;---Use “typeof” function to print type  
print(typeof(dx)) ; “double”!

Introduction to NCL

Changing variables to a “higher” type
ff = 1.5e20 ; float  
ff = 1000 ; Assigning integer value to  
 ; float variable is okay!  
ff = 1d36 ; Assigning double value  
 ; to float not okay.  
 ; Error: “type mismatch”!
 

;---Use delete or reassignment (:=) operator  
delete(ff)  
ff = 1d36 ; double!

;---This will work too  
ff = 1.5e20  
ff := 1d36

Introduction to NCL

NCL statements

•  “if”	
 statement	

•  “do”	
 loops	

•  “load”	
 to	
 load	
 other	
 NCL	
 scripts	

•  “func7on”	
 to	
 define	
 your	
 own	
 func7on	

•  “procedure”	
 to	
 define	
 your	
 own	
 procedure	

•  “exit”	
 to	
 exit	
 NCL	
 script	
 at	
 that	
 point	

•  “quit”	
 if	
 you	
 are	
 running	
 interac7vely	

h=p://www.ncl.ucar.edu/Document/Manuals/Ref_Manual/NclStatements.shtml	

“if” and “do” statements

j = 0  
found = False  
do while (j.lt.nvalues .and. .not.found)  
 if(something) then  
 do something  
 found = True  
 end if  
 do something  
 increment j in some fashion  
end do!

do i=0,ndims-1 ; do i=ndims-1,0,1 for reverse  
 do something  
end do ; space between “end” and “do”!

if(varname.eq.”slp”.and.units.eq.”Pa”) then  
 do something  
else ; No “else if”  
 do something else  
end if ; There must be a space  
 ; between “end” and “if”!

Introduction to NCL

Trick to get around lack of “elseif”
if(x.lt.0) then!

 do something!

else if(x.gt.0) then!

 do something else!

else ; x = 0!

 do something else!

end if ; Need one of these for every “if”  
end if!

!

Introduction to NCL

Array basics

•  Row major like C/C++ (Fortran is column major)
•  Leftmost dimension varies the slowest,

rightmost varies fastest
•  Use “(/” and “/)” to create arrays

•  Dimensions are numbered left to right (0,1,…)
•  Indexes (subscripts) start at 0 (0 to n-1)

•  Use parentheses to access elements

•  Can do calculations across whole arrays without
looping

Introduction to NCL

Array basics
;---One-dimensional (1D) arrays, 3 elements  
lat = (/-80,0.,80/) ; float  
LAT = (/-80,0,80/) ; integer!

;---1D string array, 4 elements  
MM = (/”March”, ”April”, ”May”, ”June”/)!

;---Create 3x2 two-dimensional (2D) double array  
z = (/(/1,2d/),(/3,4/),(/9,8/)/)  
!
;---Assume “x” is a one-dimensional array!
dx = x(2) – x(1) ; 3rd value minus 2nd value  

!
;---Assume Y is three-dimensional(nx,ny,nz)!
y1 = y(0,0,0) ; y1 = first value of y!
yn = y(nx-1,ny-1,nz-1) ; yn = last value of y!

Introduction to NCL

Array subscripting

•  Three kinds of array subscripting
1.  Index (uses ‘:’ and ‘::’)

2.  Coordinate (uses curly braces ‘{‘ and ‘}’)

3.  Named dimensions (uses ‘!’)

•  You can mix subscripting types in one variable

•  Be aware of dimension reduction

•  Index subscripting is 0-based
(Fortran by default is 1-based)

Introduction to NCL

Array index subscripting, : and ::
;---Assume T is a 3D array (ntime x nlat x nlon)  
 t = T! ; Copy entire array to new variable  
 t = T(:,:,:) ; Don’t need to do this!  
 
 t = (/T/) ; Copy entire array, don’t copy metadata  
 ; (_FillValue is retained)!

;---The following examples create a 2D array “t” from “T”  
 t = T(0,:,::5) ; 1st time index, all lat, every 5th lon  
 ; (nlat x nlon/5)  
 
 t = T(0,::-1,:50) ; 1st time index, reverse lat,  
 ; first 51 lons (nlat x 51)  
 
 t = T(:1,45,10:20) ; 1st two time indices, 46th index of lat,  
 ; 11th-21st indices of lon (2 x 11)!

;---To prevent dimension reduction, use n:n  
 t = T(0:0,:,::5) ; 1 x nlat x nlon/5  
 t = T(:1,45:45,10:20) ; 2 x 1 x 21!

Introduction to NCL

Calculations on arrays

•  Don’t	
 need	
 to	
 loop	
 to	
 do	
 array	
 calcula7ons	

•  Arrays	
 need	
 to	
 be	
 same	
 size,	
 but	
 scalars	
 can	

be	
 used	
 anywhere;	
 scalars	
 are	
 arrays	
 with	

one	
 dimension	
 and	
 one	
 element	

•  Use	
 “conform”	
 func7on	
 if	
 you	
 need	
 to	

conform	
 one	
 array	
 to	
 size	
 of	
 another	

Introduction to NCL

 !
 0 1 2!

 !

 0 1 2 3!
!

;---Assume “clat” and “clon” are lat/lon arrays in radians  
rad2deg = 45./atan(1.) ; radians to degrees  
lat = clat * rad2deg ; Convert to degrees  
lon = clon * rad2deg  
lat@units = “degrees_north” ; Good idea to do this!  
lon@units = “degrees_east”  
!

;---Can also do this  
lat = (/clat * rad2deg/) ; Special: don’t copy metadata  
!

;---Be careful with ordering of syntax  
zlev = (-7*log(lev/10^3)) ; evaluated as  
 ; (-7)*log(lev/(10^3))!;  
; Use “conform” to promote an array to the size of another.  
;  
; Assume “Twk” is (time,lat,lon,lev), and  
; “ptp” is (time,lat,lon)  
 

ptropWk = conform(Twk, ptp, (/0,1,2/)) ; time,lat,lon,lev  
!

Calculations on arrays

Introduction to NCL

Array efficiency
;---Inefficient  
do i=0,ny-1  
 do j=0,nx-1  
 x(i,j) = y(i,j) * 0.01  
 end do  
end do  
!
;---Efficient  
x = y*0.01!

;---Inefficient  
do i=0,nlon-1  
 if(lon(i).lt.0) then  
 lon(i) = lon(i) + 360.  
 end if  
end do!
;---Efficient"
lon = where(lon.lt.0,lon+360,lon)!

Introduction to NCL

;---Reshaping an array  
 t1D = ndtooned(T) ; Convert to 1D array  
 t2D = onedtond(t1D, (/N,M/)) ; Convert to N x M array!

;---Reordering an array, uses “named dimensions”  
; Let T(time,lat,lon)  
 t = T(lat|:,lon|:,time|:) ; Can’t assign to same var!

;---Reversing dimensions of an array  
 

; Let T(lev,lat,lon)  
 T = T(::-1,:,:) ; Will reverse coordinate array too,!

Array reorder, reshape, reverse

Introduction to NCL

;---Very useful “where” function  
 q = where(z.gt.pi .and. z.lt.pi2, pi*z, 0.5*z)  
!

; “num”, “any”, “all” 
 

 npos = num (xTemp.gt.0.0)  
 

 if (.not.any(string_array.eq.”hello world”)) then  
 do something  
 end if!
 

 if (all(xTemp.lt.0)) then  
 do something  
 end if!

; “ind” function, only on 1D arrays  
 ii = ind(pr.lt.500. .and. pr.gt.60.)  
!

Special functions for arrays

Introduction to NCL

Useful array functions
•  “dimsizes” – get dimension sizes
•  “any” or “all” – check array values
•  “where” – perform operation on array based on conditional

statements
•  “conform” – make a smaller array conform to size of larger array
•  “mask” – mask an array based on another array
•  “ind” – get the indexes of a one-dimensional array where an

array condition is True
•  “reshape” – reshape an array to another dimension size
•  “ndtooned” and “onedtond” – convert arrays from one-

dimensional to multi-dimensional, and vice versa

http://www.ncl.ucar.edu/Document/Functions/array_manip.shtml

Introduction to NCL

DEMO

•  Crea7ng	
 scalar	
 and	
 array	
 variables	

•  Calling	
 NCL	
 func7ons	

• Using	
 “print”	
 and	
 “printVarSummary”	

	

h,p://www.ncl.ucar.edu/Training/Workshops/interac:ve.shtml	

Introduction to NCL

Topics

•  Overview	
 of	
 NCL	

•  NCL	
 language	
 basics	

− How	
 to	
 run	
 NCL	

− Language	
 syntax	

− Variables	
 (scalars	
 and	
 arrays)	

•  Metadata	

•  NetCDF	
 files	

•  Website	
 tour	

Introduction to NCL

Metadata
•  Metadata is information about a variable.

•  Metadata can consist of:
− Attributes (can describe files and variables)

− Named dimensions (describes a variable’s dimensions)

− Coordinate arrays (coordinates for data values)

•  “_FillValue” attribute is special: indicates a variable’s
missing value

•  When you do an “ncdump -h” or “ncl_filedump” on a “self-
describing” data file, you see all the metadata

•  NCL will use metadata in many cases, 	

Introduction to NCL

Why is metadata important?

•  Can give important information about a variable: units,

description, location (lat/lon), date, how it was calculated,

etc.

•  Languages like NCL, GrADS, Ncview, CDO, NCO,

depend on metadata to correctly interpret data for

calculations and graphics

•  When you share data files with someone else, metadata

is like a document for your data.
NetCDF Climate and Forecast (CF) Metadata Conventions

http://cf-pcmdi.llnl.gov

Metadata assignment (attributes)
; Use the “@” symbol to assign attribute metadata.  
; Useful for assigning units, long names, missing vals  

; Assume “T” is 3 x 4 x 5 float array of temperature  
; values in degrees celsius.  
 

 T@_FillValue = -999 ; Missing value  
 T@units = “deg C”  
 T@long_name = “temperature”  
 T@wgts = (/ 0.25, 0.5, 0.25 /)  
 printVarSummary(T) ; To see contents of T!

Variable: T!
Type: float!
Total Size: 240 bytes!
 60 values!
Number of Dimensions: 3!
Dimensions and sizes: [3] x [4] x [5]!
Coordinates: !
Number Of Attributes: 5!
 wgts : (0.25, 0.5, 0.25)!
 long_name : temperature!
 units : deg C!
 _FillValue : -999

printVarSummary(T) results

Metadata assignment (named dimensions)
; Named dimensions are useful for arrays.  
; Use the “!” symbol to name dimensions.  
; Assume “T” is same 3D array as before  
 T!0 = “time” ; Leftmost dimension  
 T!1 = “lat” ; Middle dimension  
 T!2 = “lon” ; Rightmost dimension!

 printVarSummary(T) ; To see metadata of T!

Variable: T!
Type: float!
Total Size: 240 bytes!
 60 values!
Number of Dimensions: 3!
Dimensions and sizes: [time | 3] x [lat | 4] x [lon | 5]!
Coordinates: !
Number Of Attributes: 5!
 wgts : (0.25, 0.5, 0.25)!
 long_name : temperature!
 units : deg C!
 _FillValue : -999!

Introduction to NCL

Missing values (“_FillValue” attribute)
•  “_FillValue” is a NetCDF and NCL reserved attribute
•  Must be same as type of variable

•  “missing_value” attribute has no special status to
NCL.
If “T” has “missing_value” attribute and no
“_FillValue”:

 T@_FillValue = T@missing_value!

•  Best not to use zero as a _FillValue!

•  Default missing values for all NCL variable types:

http://www.ncl.ucar.edu/Document/Manuals/Ref_Manual/NclVariables.shtml

Introduction to NCL

Missing values in an NCL script
•  Most NCL functions ignore _FillValue:

x = (/1,2,3,-999,5/) ; no msg val yet  
xavg = avg(x) ; = -197.6  
x@_FillValue = -999 ; now has a msg val  
xavg = avg(x) ;(1+2+3+5)/4 = 2.7!

•  Use “default_fillvalue” to set a missing value for a
variable that doesn’t have one:

x@_FillValue = default_fillvalue(typeof(x))!

Introduction to NCL

Missing value functions
•  Use any, all, and ismissing functions to query a

variable for missing values:

 if (.not.any(ismissing(T))) then  
 do something  
 end if  
 if (all(ismissing(T))) then  
 do something  
 end if!

•  Use num & ismissing to count missing values:
 nmsg = num(ismissing(T))!

Introduction to NCL

Metadata assignment (coordinate arrays)
; Coordinate arrays are 1D arrays representing values  
; for dimensions of an array. Use the “&” symbol to assign  
; coordinate values; must name dimensions first.  

 T!0 = “time”  
 T!1 = “lat”  
 T!2 = “lon”  

 T&time = (/0,5,10/) ; Coordinate arrays must  
 T&lat = fspan(-90,90,4) ; be 1D and same length  
 T&lon = fspan(-180,180,5) s; as dimension they represent  
 T&lat@units = “degrees_north”  
 T&lon@units = “degrees_east”!

Variable: T!
Type: float!
Total Size: 240 bytes!
 60 values!
Number of Dimensions: 3!
Dimensions and sizes: [time | 3] x [lat | 4] x [lon | 5]!
Coordinates: !
 time: [0..10]!
 lat: [-90..90]!
 lon: [-180..180]!

Important for graphics

Introduction to NCL

DEMO

Looking	
 at	
 variables	
 with	
 metadata	

h,p://www.ncl.ucar.edu/Training/Workshops/interac:ve.shtml	

Introduction to NCL

Array Subscripting
•  Three kinds of array subscripting

1.  Index (uses ‘:’ and ‘::’) (already covered)
2.  Coordinate (uses curly braces ‘{‘ and ‘}’)
3.  Named dimensions (uses ‘!’)

•  You can mix subscripting types in one
variable

•  Be aware of dimension reduction
•  Index subscripting is 0-based

(Fortran by default is 1-based)

http://www.ncl.ucar.edu/Document/Manuals/Ref_Manual/NclVariables.shtml#Subscripts

Introduction to NCL

Array coordinate subscripting, {…}

; Consider T(ntime x nlat x nlon)  
 
 t = T(:,{-30:30},:) ; all time and lon, lat 30oS to 30oN  
 
 t = T(0,{-20},{-180:35:3}) ; 1st time, lat nearest 20oS,  
 ; every 3rd lon from 180oW to 35oE  
 ; “t” will be one-dimensional  
!

; Can mix index and coordinate subscripting  
 
 t = T(:,{-30:30},1::2) ; all time, lat 30oS to 30oN,  
 ; every other lon starting with 2nd  
!

Introduction to NCL

; comment (on line by itself, or at end of line)
@ reference/create attributes
! reference/create named dimensions
& reference/create coordinate variables
{…} coordinate subscripting
$...$ enclose strings when (im/ex)port variables via addfile
(/.../) array construct characters
: or :: array syntax
| separator for named dimensions
\ continuation character
:: syntax for external shared objects (fortran/C)
-> use to (im/ex)port variables via addfile function

NCL syntax characters

Introduction to NCL

Topics

•  Overview	
 of	
 NCL	

•  NCL	
 language	
 basics	

− How	
 to	
 run	
 NCL	

− Language	
 syntax	

− Variables	
 (scalars	
 and	
 arrays)	

•  Metadata	

•  NetCDF	
 files	

•  Website	
 tour	

Introduction to NCL

Looking at NetCDF files

•  Many	
 ways	
 to	
 look	
 at	
 NetCDF	
 files	

1.  On	
 the	
 UNIX	
 command	
 line	
 using	
 “ncdump”	

2.  On	
 the	
 UNIX	
 command	
 line	
 using	
 “ncl_fileump”	

3.  With	
 an	
 NCL	
 script	
 using	
 “addfile”	
 func7on	

Introduction to NCL

DEMO
Looking	
 at	
 files	
 with	
 ncdump	
 (NetCDF	
 tool)	
 and	

ncl_filedump	
 (NCL	
 tool)	

	

Rec7linear	
 grids	
 –	
 grids	
 whose	
 la7tude	
 and	
 longitude	
 arrays	
 are	

“coordinate	
 arrays”	
 (one-­‐dimensional	
 arrays,	
 and	
 rightmost	
 two	

dimensions	
 are	
 nlat	
 x	
 nlon)	

Curvilinear	
 grids	
 –	
 grids	
 whose	
 la7tude	
 and	
 longitude	
 arrays	
 are	

two-­‐dimensional	
 arrays,	
 and	
 rightmost	
 two	
 dimensions	
 are	
 nlat	
 x	

nlon)	

Unstructured	
 grids	
 –	
 one-­‐dimensional	
 arrays	
 whose	
 la7tude	
 and	

longitude	
 arrays	
 are	
 also	
 one-­‐dimensional	
 and	
 all	
 the	
 same	
 length	

	

	

Introduction to NCL

Writing NCL script to open NetCDF file

•  “addfile”	
 –	
 open	
 NetCDF,	
 HDF4,	
 HDF5,	

GRIB1,	
 GRIB2,	
 HDF-­‐EOS2,	
 HDF-­‐EOS5,	

Shapefile	

•  “addfile”	
 can	
 also	
 be	
 used	
 to	
 write	
 NetCDF	
 or	

HDF4	

•  Variables	
 read	
 off	
 these	
 files	
 contain	

everything,	
 including	
 metadata	

•  Use	
 “-­‐>”	
 syntax	
 to	
 read	
 a	
 variable	
 off	
 the	
 file	

•  “addfiles”	
 –	
 read	
 mul7ple	
 files	

Introduction to NCL

DEMO

Reading	
 and	
 wri7ng	
 NetCDF	

files	
 using	
 “addfile”	

Introduction to NCL

Important URLS
•  DKRZ	
 NCL	
 Tutorial	
 Document	

h=p://mms.dkrz.de/pdf/vis/NCL_Tutorial_V1.1.pdf	

•  NCL	
 Reference	
 Manual	

h=p://www.ncl.ucar.edu/Document/Manuals/Ref_Manual/	

•  Mini	
 Reference	
 Manual	

h=p://www.ncl.ucar.edu/Document/Manuals/language_man.pdf	

•  Frequently	
 Asked	
 Ques7ons	

h=p://www.ncl.ucar.edu/FAQ/	

•  Metadata	
 conven7ons	

h=p://www.unidata.ucar.edu/so_ware/netcdf/examples/files.html	

Introduction to NCL

Topics

•  Overview	
 of	
 NCL	

•  NCL	
 language	
 basics	

− How	
 to	
 run	
 NCL	

− Language	
 syntax	

− Variables	
 (scalars	
 and	
 arrays)	

•  Metadata	

•  NetCDF	
 files	

•  Website	
 tour	
 ?	

