bootstrap_estimate
Extract the user specified element from the bootstrapped values.
Available in version 6.4.0 and later.
Prototype
function bootstrap_estimate ( xBoot : numeric, fpc [1] : float or double, opt [1] : logical ) return_val [ numeric value or array ]
Arguments
xBootAn array containing the bootstrapped values in ascending order as returned by the bootstrap_* functions.
fpcA scalar between 0 and 1 (0.0 < fpc < 1.0) which specifies the desired level.
optCurrently not used. Set to False.
Return value
All appropriate meta data are returned. Please use printVarSummary(...) to examine the returned variable.
Description
A simple function that calculates the appropriate index value corresponding to the fraction fpc and extracts that value or array from the xBoot array. All appropriate meta data are returned.
References:
Computer Intensive Methods in Statistics P. Diaconis and B. Efron Scientific American (1983), 248:116-130 doi:10.1038/scientificamerican0583-116 http://www.nature.com/scientificamerican/journal/v248/n5/pdf/scientificamerican0583-116.pdf An Introduction to the Bootstrap B. Efron and R.J. Tibshirani, Chapman and Hall (1993) Bootstrap Methods and Permutation Tests: Companion Chapter 18 to the Practice of Business Statistics Hesterberg, T. et al (2003) http://statweb.stanford.edu/~tibs/stat315a/Supplements/bootstrap.pdf Climate Time Series Analysis: Classical Statistical and Bootstrap Methods M. Mudelsee (2014) Second edition. Springer, Cham Heidelberg New York Dordrecht London ISBN: 978-3-319-04449-1, e-ISBN: 978-3-319-04450-7 doi: 10.1007/978-3-319-04450-7 xxxii + 454 pp; Atmospheric and Oceanographic Sciences Library, Vol. 51
See Also
generate_sample_indices, bootstrap_stat, bootstrap_diff, bootstrap_correl, bootstrap_regcoef
Examples
Please see the Bootstrap and Resampling application page.
Example 1: Let x(N); y(N), N=100:
nBoot = 1000 ; user set nDim = 0 ; or (/0,0/); dimension numbers corresponding to 'N' opt = False ; use all default options BootStrap = bootstrap_correl(x, y, nBoot, nDim, opt) rBoot = BootStrap[0] ; bootstrapped cross-correlations in ascending order rBootAvg = BootStrap[1] ; Average of the bootstrapped cross correlations rBootStd = BootStrap[2] ; Bootstrapped standard deviations delete(BootStrap) ; no longer needed rBootLow = bootstrap_estimate(rBoot, 0.025, False) ; 2.5% lower confidence bound rBootMed = bootstrap_estimate(rBoot, 0.500, False) ; 50.0% median of bootstrapped estimates rBootHi = bootstrap_estimate(rBoot, 0.975, False) ; 97.5% upper confidence bound printVarSummary(rBoot) ; information only printVarSummary(rBootMed)