
eof2data_n
Reconstructs a data set from EOFs and EOF time series, given an index that specifies which dimension contains the time dimemsion.
Available in version 6.4.0 and later.
Prototype
function eof2data_n ( ev : numeric, ev_ts [*][*] : numeric, dim [1] : integer ) return_val : numeric
Arguments
evA multi-dimensional array containing the EOFs calculated using eofunc_n.
ev_tsA two-dimensional array containing the EOF time series calculated using eofunc_ts_n.
dimThe dimension index of data that represents the dimension containing the time dimension.
Return value
An array of the same size and type as the main data array input into eofunc_n.
Description
Uses the EOF spatial patterns and amplitude time series to create a data field. The original data array may be reconstructed if all possible eigen functions were used. If only a subset are used, the returned array will explain a percent of the variance of the original array. Note that the time series of amplitude coefficients returned by eofunc_ts_n has had the mean subtracted. To reconstruct the original series, the mean of each component must be included. The component means are returned as an attribute, ts_mean, of of ev_ts. You access this attribute via the @ operator:
print(ev_ts@ts_mean)
See Also
eof2data, eofunc_n, eofunc_ts_n, eofunc_n_Wrap, eofunc_ts_n_Wrap, eofunc, eofunc_ts eofunc_Wrap, eofunc_ts_Wrap
Examples
Example 1
Assume x is three-dimensional with dimensions time, lat, and lon.
neval = 7 ; number of EOFs ev = eofunc_n(x,neval,False,0) ; ev(neval,nlat,nlon) evts = eofunc_ts_n(x,ev,False,0) ; evts(neval,ntime) do n=0,neval-1 evts(n,:) = evts(n,:) + evts@ts_mean(n) ; add time series mean end do xEof = eof2data_n(ev,evts,0) ; reconstruct original array ; x2 = eof2data_n(ev(0:1,:),evts(0:1,:),0) ; construct array using ; first 2 EOFsExample 2
Assume z is four-dimensional with dimensions time, level, lat, lon. Compute the EOFs at one level.
kl = 3 ; specify level neval = 8 ; calculate 8 EOFs out of nlat*mlon ev = eofunc_n(z(kl,:,:,:),neval ,False,0) ; ev(neval,nlat,mlon) evts = eofunc_ts_n (z(kl,:,:,:),ev,False,0) ; evts(neval,ntime) do n=0,neval-1 evts(n,:) = evts(n,:) + evts@ts_mean(n) ; add time series mean end do z8 = eof2data_n(ev,evts,0) ; reconstruct array using the 8 EOFs ; z8(ntim,nlat,mlon)Example 3
Note: when dealing with latitude/longitude grids, the user may have weighted the observations by the cosine of the latitude prior to using eofunc_n. To reconstruct the data, an extra step is needed to remove the weighting.
Assume p is three-dimensional with dimensions time, lat, and lon. Both time and lat are one-dimensional. Lat contains the latitudes.
clat = sqrt(cos(lat*0.0174532)) ; array syntax clat(nlat) do nl=0,nlat-1 ; weight by cosine of the latitude p(:,nl,:) = p(:,nl,:)*clat(nl) ; array syntax end do neval = 3 ; calculate 3 EOFs out of nlat*mlon ev = eofunc_n(p,neval,False,0) ; ev(neval,nlat,mlon) evts = eofunc_ts_n(p,evecv,False,0) ; evts(neval,ntim) do n=0,neval-1 evts(n,:) = evts(n,:) + evts@ts_mean(n) ; add time series mean end do p3 = eof2data_n(ev,evts,0) ; reconstruct weighted array using 3 EOFs do nl=0,nlat-1 ; remove weighting if (clat(nl).ne.0.) then p3(:,nl,:) = p3(:,nl,:)/clat(nl) ; array syntax end if end do