
escovc
Computes sample cross-covariances at lag 0 only.
Prototype
function escovc ( x : numeric, y : numeric ) return_val : numeric
Arguments
xAn array of any numeric type or size. The rightmost dimension is usually time.
yAn array of any numeric type or size. The rightmost dimension is usually time. The size of the rightmost dimension must be the same as x.
Return value
A scalar value if x and y are one-dimensional. The same size as x if either x or y are multi-dimensional. Double if x is double, float otherwise.
Description
Computes sample cross-covariances at lag 0 only. If a lagged covariance is required, use esccv. Missing values are allowed.
Algorithm:
cov = SUM [(X(t)-Xave)*(Y(t)-Yave)]/(NT-1)The dimension sizes(s) of c are a function of the dimension sizes of the x and y arrays. The following illustrates dimensioning:
x(N), y(N) a scalar x(N), y(K,M,N) c(K,M) x(I,N), y(K,M,N) c(I,K,M) x(J,I,N), y(L,K,M,N) c(J,I,L,K,M)special case when dimensions of all x and y are identical:
x(J,I,N), y(J,I,N) c(J,I)
See Also
esacv,esacr,esccr, esccv,escorc
Examples
Example 1
The following will calculate the cross-covariance for a two one-dimensional arrays x(N) and y(N).
ccv = escovc(x,y) ; ccv is a scalarExample 2
The following will calculate the cross-covariance for one two-dimensional array y(lat,lon,time) and one one-dimensional array x(time).
ccv = escovc(x,y) ; ccv(lat,lon)Example 3
Consider x(neval,time) and y(lat,lon,time)
ccv = escovc(x,y) ; ccv(neval,lat,lon)