calculate_monthly_values
Calculate monthly values [avg, sum, min, max] from high frequency temporal values.
Available in version 6.2.0 and later.
Prototype
load "$NCARG_ROOT/lib/ncarg/nclscripts/csm/contributed.ncl" ; This library is automatically loaded ; from NCL V6.2.0 onward. ; No need for user to explicitly load. function calculate_monthly_values ( x : numeric, arith [1] : string, nDim [1] : integer, opt [1] : logical ) return_val : float or double array with with the same rank as x.
Arguments
xArray containing the high frequency data. The x must have an associated time coordinate variable in units recognized by the cd_calendar function.
The following array structures are supported. The dimension name 'time' is a place-holder. Any name can be used. The nDim argument specifies the dimension number to be used.
(time) ; nDim=0 (time,npts) (time,ny,nx) (time,nz,ny,nx) (time,ne,nz,ny,nx) ; nDim=0; added for NCL version 6.5.0 (ne,time,nz,ny,nx) ; nDim=1arith
A scalar string value which specifies the operation to be performed. Valid values are: "avg" [also, "ave"], "sum", "min", "max", "var", "std". It is required that x have associated with it a coordinate variable named time (ie, x&time) where "time" is recognized by cd_calendar.
nDimThe dimension of x on which to calculate the statistic. Currently, only nDim=0 or 1 is allowed.
Return value
An array of the same rank as x.
Description
The function uses cd_calendar to extract the year, month, day and hour. All values for a particular month are used. NOTE: Use of cd_calendar means the units of time are something like: "days/hours/minutes/seconds since ...". If these units are not present as an attribute of 'time', the function will not work.
As an alternative to this function, consider using the Climate Data Operators (CDO). These operators will process all variables on the file. For example:
cdo monmean foo_hourly_or_daily.nc foo_monthly_mean.nc cdo monmin foo_hourly_or_daily.nc foo_monthly_min.nc cdo monmax foo_hourly_or_daily.nc foo_monthly_max.nc cdo monsum foo_hourly_or_daily.nc foo_monthly_sum.nc
See Also
calculate_daily_values, dim_avg_n, dim_sum_n, dim_min_n, dim_max_n
Examples
Example 1:
Let x(time,lat,lon) where x&time is recognized by cd_calendar. The values of x may contain (say) n-hourly or daily data.
xMonthAvg = calculate_monthly_values(x, "avg", 0, False) xMonthSum = calculate_monthly_values(x, "sum", 0, False) xMonthMin = calculate_monthly_values(x, "min", 0, False) xMonthMax = calculate_monthly_values(x, "max", 0, False) xMonthVar = calculate_monthly_values(x, "var", 0, False) xMonthStd = calculate_monthly_values(x, "std", 0, False)
Example 2:
Read daily values (time,level,lat,lon) for one year and calculate the monthly means. The value are type 'short' with a scale_factor and 'add-offset'. The nDim refers to the 'time' dimension (nDim=0).
f = addfile("air.day.2008.nc","r") x = short2flt(f->air) printVarSummary(x) opt = True opt@nval_crit = 12 ; require at least 12 values for the "avg" is calculated. xMon = calculate_monthly_values (x, "avg", 0,opt) printVarSummary(xMon)The output looks like:
Variable: xMon Type: float Total Size: 8577792 bytes 2144448 values Number of Dimensions: 4 Dimensions and sizes: [time | 12] x [level | 17] x [lat | 73] x [lon | 144] Coordinates: time: [17593032..17601072] level: [1000..10] lat: [90..-90] lon: [ 0..357.5] Number Of Attributes: 18 _FillValue : 32766 missing_value : 32766 long_name : mean Monthly Air temperature valid_range : ( 150, 350 ) actual_range : ( 178.73, 318.5 ) units : degK precision : 2 least_significant_digit : 1 GRIB_id : 11 GRIB_name : TMP var_desc : Air temperature dataset : NCEP Reanalysis Daily Averages level_desc : Multiple levels statistic : Mean parent_stat : Individual Obs _FillValue_original : 32766 missing_value_original : 32766 NCL_tag : calculate_monthly_values: arith=avg
Example 3:
Read hourly values for spanning multiple files and calculate the daily and monthly means. The 'time' dimension is: nDim=0. In this example, the files contain hourly values for two months.
diri = "../" fili = systemfunc("cd "+diri+" ; ls ACCESS_SRF.*.nc") ; all files beginning with 'ACCESS_SRF' nfili = dimsizes(fili) print(fili) varName = (/"snv" , "ts"/) nName = dimsizes(varName) opt = True opt@nval_crit = 10 ; require at least 10 values ndim = 0 f = addfiles(diri+fili, "r") ; read variables from all files do nv=0,nName-1 print("") print("-----------------------------------------------") print("----------- "+varName(nv)+" -----------------") print("-----------------------------------------------") print("") xhr := f[:]->$varName(nv)$ ; (time,lat,lon) printVarSummary(xhr) xdd := calculate_daily_values (xhr, "avg", ndim, opt) printVarSummary(xdd) xmm := calculate_monthly_values (xhr, "avg", ndim, opt) printVarSummary(xmm) end doThe output for the 'snv' variables is:
Variable: fili Type: string Total Size: 16 bytes 2 values Number of Dimensions: 1 Dimensions and sizes: [2] Coordinates: (0) ACCESS_SRF.1980010100.nc (1) ACCESS_SRF.1980020100.nc ; leap year (29 days in Feb. (0) (0) ----------------------------------------------- (0) -----------> snv <----------------- (0) ----------------------------------------------- (0) Variable: xhr Type: float Total Size: 176238720 bytes 44059680 values Number of Dimensions: 3 Dimensions and sizes: [time | 1440] x [iy | 141] x [jx | 217] ; 1440 = (24*31)+(24*29) Coordinates: time: [263713..265152] iy: [-1750000..1750000] jx: [-2700000..2700000] Number Of Attributes: 7 long_name : Liquid water equivalent of snow thickness standard_name : lwe_thickness_of_surface_snow_amount units : kg m-2 coordinates : xlat xlon grid_mapping : rcm_map cell_methods : time: mean _FillValue : 1e+20 Variable: xdd Type: float Total Size: 7343280 bytes 1835820 values Number of Dimensions: 3 Dimensions and sizes: [time | 60] x [iy | 141] x [jx | 217] ; 60 = (31+29) Coordinates: time: [263713..265128] iy: [-1750000..1750000] jx: [-2700000..2700000] Number Of Attributes: 9 _FillValue : 1e+20 long_name : Liquid water equivalent of snow thickness standard_name : lwe_thickness_of_surface_snow_amount units : kg m-2 coordinates : xlat xlon grid_mapping : rcm_map cell_methods : time: mean time : 263713 NCL_tag : calculate_daily_values: arith=avg Variable: xmm Type: float Total Size: 244776 bytes 61194 values Number of Dimensions: 3 Dimensions and sizes: [time | 2] x [iy | 141] x [jx | 217] ; 2 months [Jan , Feb] Coordinates: time: [263713..264456] iy: [-1750000..1750000] jx: [-2700000..2700000] Number Of Attributes: 9 _FillValue : 1e+20 long_name : Liquid water equivalent of snow thickness standard_name : lwe_thickness_of_surface_snow_amount units : kg m-2 coordinates : xlat xlon grid_mapping : rcm_map cell_methods : time: mean time : 263713 NCL_tag : calculate_monthly_values: arith=avg