
kolsm2_n
Uses the Kolmogorov-Smirnov two-sample test to determine if two samples are from the same distribution.
Available in version 6.2.0 and later.
Prototype
function kolsm2_n ( x : numeric, y : numeric, dims [*] : integer ) return_val : float or double
Arguments
xy
Arrays of any dimensionality. The rank of the arrays must be the same. However, the dimension(s) specified by dims may be of different sizes. (See Examples.) All other dimensions must match. At a minimum, the sample sizes should be greater than 100. Missing data are not allowed. It is the user's responsibility to remove missing values prior to calling the function.
dimsThe dimension(s) of x and y on which to calculate the statistic. They must be consecutive and increasing.
The dimension sizes of x and y may be different but
the rank must be the same.
If dims=-1, then the entire arrays will be used.
Return value
Probability that the distributions are the same. The return type will be double if either x or y, is type double, and float otherwise. In addition, two ancillary statistics used to calculate the probability are returned as attributes, dstat and zstat. These are used to compute the returned probability. For the kolsm2_n function, these are defined as
dstat = abs(x-y) zstat = sqrt((M*N)/(M+N))*dstat) where M, N are the dimension sizes of x and y.
Description
Note: a bug was found in which this routine doesn't work across
multiple-dimensioned arrays. This will be fixed
in V6.4.0.
You can work around this by using loops, which will be slower:
|
; Assume: ; TS_2 is dimensioned nyears1 x nlat x nlon ; TS_3 is dimensioned nyears2 x nlat x nlon ; dims = dimsizes(TS_2) nlat = dims(1) nlon = dims(2) ks = new((/nlat,nlon/),typeof(TS_2)) ds = new((/nlat,nlon/),typeof(TS_2)) zs = new((/nlat,nlon/),typeof(TS_2)) do ilat = 0, nlat-1 do ilon = 0, nlon-1 ks_single = kolsm2_n(TS_2(:,ilat,ilon),TS_3(:,ilat,ilon),0) ks(ilat,ilon) = ks_single ds(ilat,ilon) = ks_single@dstat zs(ilat,ilon) = ks_single@zstat end do end do |
The Kolmogorov-Smirnov (KS) two-sample test determines if two samples are from the same parent distribution. The KS test is non-parametric and distribution free. i.e.,: It makes no assumption about the distribution of data. The statistic compares cumulative distributions of two data samples. A large difference between the two cumulative sample distributions indicates that data are not drawn from the same distribution.
From Wikipedia: "The two-sample KS test is one of the most useful and general nonparametric methods for comparing two samples, as it is sensitive to differences in both location and shape of the empirical cumulative distribution functions of the two samples."
The null hypothesis is that both groups were sampled from populations with identical distributions. Hence, if the returned p-value is small (eg, < 0.05), the two data sets were likely sampled from populations with different distributions and the null hypothesis can be rejected.
The kolsm2_n function does not test for 'ties'. This test should only be used when ties are a very small percent of the entire samples.
This function sorts the x and y subsets before doing the calculation. As a result, large datasets will take time to perfom the required operations. The original input arrays are not changed.
NOTE: Any time a distribution (here, two distributions) is/are tested, the user should realize that there is no substitute for large sample size(s). A minimum 'large' size would be at least 100 values.
See Also
Examples
See note above about bug with multiple dimensions.
As always, it is best if the sample sizes of X and Y are large.
Example 1
Consider two small arrays.
x = (/15.7, 16.1, 15.9, 16.2, 15.9, 16.0, 15.8, 16.1, 16.3, 16.5, 15.5/) y = (/15.4, 16.0, 15.6, 15.7, 16.6, 16.3, 16.4, 16.8, 15.2, 16.9, 15.1/) p = kolsm2_n(x,y,0) ; p=0.808 ; p@dstat = 0.2727; p@zstat= 0.639 ; can not reject null hypothesis (H0) print(p)The output from the print statement is:
Variable: p Type: float Total Size: 4 bytes 1 values Number of Dimensions: 1 Dimensions and sizes: [1] Coordinates: Number Of Attributes: 2 dstat : 0.2727273 zstat : 0.6396022 (0) 0.8079244The results match those obtained from R's ks.test.
> a = c(15.7, 16.1, 15.9, 16.2, 15.9, 16.0, 15.8, 16.1, 16.3, 16.5, 15.5) > b = c(15.4, 16.0, 15.6, 15.7, 16.6, 16.3, 16.4, 16.8, 15.2, 16.9, 15.1) > q = ks.test(a, b) Warning message: In ks.test(a, b) : cannot compute exact p-value with ties > q Two-sample Kolmogorov-Smirnov test data: a and b D = 0.2727, p-value = 0.8079 alternative hypothesis: two-sidedExample 2 Let X and Y are one-dimensional arrays (they need not be the same size). Note: the user may find some differences from the results here due to the nature of the random number generators.; two normal distributions NX = 100 xavg = 0.0 xstd = 10.0 NY = 200 yavg = 0.0 ystd = 10.0 X = random_normal (xavg, xstd, NX) Y = random_normal (yavg, ystd, NY) pXY = kolsm2_n(X, Y, 0) ; pXY= 0.395 ; p@dstat= 0.11; p@zstat= 0.898 ; can not reject null hypothesis (H0) ; two different distributions: normal and uniform NZ = 200 zlow = -10.0 zhi = 10.0 Z = random_uniform (zlow, zhi, NZ) pXZ = kolsm2_n(X, Z, 0) ; pXZ=0.00 ; p@dstat = 0.265; p@zstat= 2.164 ; reject null hypothesis (H0)The Example 2 X, Y, Z were saved to an ascii (text) file and then input to R's ks.test function. The results matched.
> x = scan("../R_Data/xNormal.txt") Read 100 items > y = scan("../R_Data/yNormal.txt") Read 200 items > q = ks.test(x, y) > q Two-sample Kolmogorov-Smirnov test data: x and y D = 0.11, p-value = 0.3953 alternative hypothesis: two-sided > u = scan("..//R_Data/yUniform.txt") Read 200 items > r = ks.test(x, u) > r Two-sample Kolmogorov-Smirnov test data: x and u D = 0.265, p-value = 0.0001716 alternative hypothesis: two-sidedExample 3
See note above about bug with multiple dimensions.
Let x(ntim1,nlat1,mlon1) and y(ntim2,nlat2,mlon2). Are the distributions the same over the entire temporal and spatial domains? Here, the user may explicitly set the dimensions or set to -1 or convert to one-dimensional arrays.
pxy = kolsm2_n(x, y, (/0,1,2/)) ; Essentially, this makes one dimensional arrays for x and y. ; pxy, pxy@dstat, pxy@zstat or pxy = kolsm2_n(x, y,-1)Example 4
See note above about bug with multiple dimensions.
Let x(ntim1,nlat,mlon) and y(ntim2,nlat,mlon). The 'ntim' may be different but the number of grid points must be the same.
pxy = kolsm2_n(x, y, 0) ; pxy(nlat,mlon); p@dstat(nlat,mlon); p@zstat(nlat,mlon)Example 4
Let x(ntim1,nlat,mlon) and y(ntim2,nlat,mlon). The 'ntim' may be different but the number of grid points must be the same.
pxy = kolsm2_n(x, y, 0) ; pxy(nlat,mlon); p@dstat(nlat,mlon); p@zstat(nlat,mlon)Example 5
Let x(N) and y(M) possibly contain missing data (_FillValue). Since kolsm2_n does not allow missing values, these must be removed by the user.
if (num(ismissing(x)) .eq.0) then xx = x else xx = x(ind(ismissing(x))) end if if (num(ismissing(y)).eq.0) then yy = y else yy = y(ind(ismissing(y))) end if pxy = kolsm2_n(xx, yy, 0) ; pxy; pxy@dstat; pxy@zstat delete( [/xx,yy/] ) ; delete temporary arraysExample 6
Let x(K1,N,M) and y(K2,N,M) contain missing data (_FillValue). Since kolsm2_n does not allow missing values, these must be removed by the user.
if (num(ismissing(x)).eq.0) then xx = x else x1d = ndtooned(x) xx = x1d(ind(ismissing(x1d)) ) delete(x1d) end if if (num(ismissing(y)).eq.0) then yy = y else y1d = ndtooned(y) yy = x1d(ind(ismissing(x1d)) ) delete(y1d) end if pxy = kolsm2_n(xx, yy, 0) ; pxy; pxy@dstat; pxy@zstat delete( [/xx,yy/] ) ; delete temporary arraysExample 7
Let x(K1,N,M) and y(K2,N,M) contain daily precipitation. This introduces the possibility of many values equal to 0.0. Further, these arrays may contain missing values. It is desired to test the distributions when it does precipitate.
x1d = ndtooned(x) ix = ind(.not.ismissing(x1d) .and. x1d.gt.0.0) y1d = ndtooned(y) iy = ind(.not.ismissing(y1d) .and. y1d.gt.0.0) pxy = kolsm2_n(x1d(ix), y1d(iy), 0) ; pxy; pxy@dstat; pxy@zstat delete( [/ix, iy/] ) ; delete temporary arrays