
wgt_areaave2
Calculates the area average of a quantity using two-dimensional weights.
Prototype
function wgt_areaave2 ( q : numeric, wgt [*][*] : numeric, opt : integer ) return_val : float or double
Arguments
qAn array of 2 or more dimensions containing the data to be averaged. The rightmost dimensions should correspond to "latitude" (lat) and "longitude" (lon) when dealing with quantities on a sphere ([...,],lat,lon), and "y" and "x" otherwise ([...,],y,x).
wgtA two-dimensional array corresponding to the rightmost dimensions of q.
optIf opt = 0, the area average is calculated using available non-missing data. If opt = 1, then if any point in q is missing, the area average is not computed. In this case, it will be set to the missing value, which is indicated by q@_FillValue, or the default missing value if q@_FillValue is not set.
Return value
Returns a scalar if q is a two dimensional array. Otherwise, the output dimensionality is the same as the leftmost n - 2 dimensions of the input.
The return type is floating point if the input is floating point, and double if the input is of type double.
Description
This function computes a weighted area average. It ignores missing values (q@_FillValue).
See Also
wgt_areaave, wgt_arearmse, wgt_arearmse2, wgt_areasum2, wgt_runave, wgt_volave, wgt_volave_ccm, wgt_volrmse, wgt_volrmse_ccm
Examples
Example 1
Let q(t, y, x) [size: (nt, ny, nx)] and let each grid point have a unique weight represented by w(y, x). Ideally, 'w' would be the area represented by each grid cell. Then:
qAvg = wgt_areaave2(q, w, opt) ; opt = 0 or 1qAvg will be a 1D array of length nt.
Example 2
Let q(time, lev, lat, lon) [size: (ntim, klev, nlat, mlon)], lat(lat) and lon(lon) be the latitude and longitude (degrees). Here, the area (dy * dx) represented by each grid point is a function of latitude. Assuming constant latitude and longitude spacing (in degrees), then one simple approach might be:
re = 6.37122e06 rad = 4.0 * atan(1.0) / 180.0 con = re * rad clat = cos(lat * rad) ; cosine of latitude dlon = (lon(2) - lon(1)) ; assume dlon is constant dlat = (lat(2) - lat(1)) ; assume dlat is constant dx = con * dlon * clat ; dx at each latitude dy = con * dlat ; dy is constant dydx = dy * dx ; dydx(nlat) wgt = new((/nlat, mlon/), typeof(q)) wgt = conform (wgt, dxdy, 0) qAvg = wgt_areaave2(q, wgt, opt) ; => qAvg(ntim, klev)Limited area sums may be obtained via standard or coordinate subscripting:
; standard subscripting => qAvg(ntim, klev) qAvg = wgt_areaave2(q(:, 10:20), wgt(:, 10:20), opt) ; name coordinates for wgt wgt!0 = "lat" wgt!1 = "lon" wgt&lat = lat wgt&lon = lon ; standard subscripting => qSumc(ntim, klev) qAvg = wgt_areaave2(q({-20:20}), {110:270}), wgt({-20:20}), {110:270}), opt)
Example 3
Let q(t, y, x) [size: (nt, ny, nx)] and let each grid point have a latitude (lat2d) associated with each grid point. If you do not know how to calculate the grid cell areas, you could possibly use cosine weighting.
f = addfile("foo.{grb,nc,hdf}","r") q = f->Q ; (ntim,nlat,mlon) lat2d = f->LAT ; (nlat,mlon) clat2d = cos(lat2d*0.01745329) qAvg = wgt_areaave2(q, clat2d, opt) ; opt = 0 or 1For a subset of the area, you can specify the appropriate indices.
iStrt = iLast = jStrt = jLast = qAvg = wgt_areaave2(q(:,jStrt:jLast,iStrt:iLast), clat2d(jStrt:jLast,iStrt:iLast), opt) ; opt = 0 or 1